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3.1 Diffusion/Conduction with Source 
Consider reaction and diffusion in a porous slab. This differential equation is one of the most 

ubiquitous ones in engineering and physics. It is analogous to heat conduction in a slab with a 

heat source which is dependent on temperature and position.  If the source, r, is constant, the 

equations describe laminar flow between parallel plates. It also describes the deflection of a 

beam. The governing equations are: 

 𝜕2𝑦

𝜕𝑥2
+ 𝑟(𝑥, 𝑦) = 0 (3.1) 

where 𝑟(𝑥, 𝑦) = 4𝜑2𝑟̂(𝑥, 𝑦) and y is the fractional conversion, 0 for no reaction and 1 for 

complete reaction. φ is called the Thiele modulus. The average value of r̂(x,0) is 1 by definition. 

The boundary conditions are either first kind, Dirichlet, boundary conditions: 

 𝑦(0) = 𝑦(1) = 0 (3.1a) 

or third kind, Robin, boundary conditions: 

 𝑑𝑦

𝑑𝑥
|
𝑥=0

= 2𝐵𝑖𝑦(0)   and −
𝑑𝑦

𝑑𝑥
|
𝑥=1

= 2𝐵𝑖𝑦(1) (3.1b) 
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In Eq. (3.1b), the Biot number, Bi, accounts for an external transfer resistance.  As Bi tends to 

infinity, Eq. (3.1b) reduces to Eq. (3.1a). The Thiele modulus and Biot numbers are normally 

defined using half the thickness of the slab, so the factors of 4 and 2 are required when the full 

slab is considered.  

 

This problem has been heavily studied in chemical engineering, including various geometries 

and highly nonlinear source functions which lead to multiple solutions. For a more thorough 

discussion see Villadsen and Michelsen (1978), Rawlings and Ekerdt (2015) and references 

therein. 

 

For a simple kth order reaction with the reactivity independent of position, the source term is: 

 𝑟̂(𝑥, 𝑦) = (1 − 𝑦)𝑘 (3.2) 

 

For a first order reaction, k = 1, the analytical solution is: 

 
𝑦 = 1 − 

cosh [𝜑(2𝑥 − 1)]

cosh(𝜑) + 𝜑sinh(𝜑)/𝐵𝑖
 (3.3) 

The quantity of interest from the solution is called the effectiveness factor, η, which gives the 

overall rate of reaction relative to that with no diffusional resistance: 

 

𝜂 =
∫ 𝑟(𝑥, 𝑦)𝑑𝑥

1

0

∫ 𝑟(𝑥, 0)𝑑𝑥
1

0

= ∫ 𝑟̂(𝑥, 𝑦)𝑑𝑥
1

0

 (3.4) 

The effectiveness factor is basically a normalized boundary flux, since the divergence theorem 

in one dimension gives: 

 
−

𝑑𝑦

𝑑𝑥
|
0

1

= 4𝜑2 ∫ 𝑟̂(𝑥, 𝑦)𝑑𝑥
1

0

= 4𝜑2𝜂 (3.5) 

In the introduction, we referred to Eq. (3.5) by the generic name average energy equation, 

since in a heat transfer setting it represents the average heat generated. Using the analytical 

solution, Eq. (3.3), this normalized flux is: 

 
𝜂 =  

1

φ[coth(𝜑) + 𝜑/𝐵𝑖]
 (3.6) 

η is approximately one for φ < ½ and becomes asymptotic when φ > 2.  The asymptotic state 

corresponds to a condition where all the reactants are consumed and the conversion, y, 

approaches one at the center. 

3.1.1 Orthogonal Collocation Method  

To solve the problem using a Method of Weighted residuals (MWR) we start with a trial 

solution, following Eqs. (1.6) and (2.2): 

 
𝑦 = ∑ 𝑦(𝑥𝑖)ℓ𝑖(𝑥)

𝑛+1

𝑖=0

 (3.7) 
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The interpolation points include the endpoints, x0 = 0 and xn+1 = 1.  As explained in Chapter 1, 

the interior points are the roots of an orthogonal polynomial, usually either Chebyshev 

polynomials of the 2nd kind, Legendre polynomials (Gauss points) or the base points of Lobatto 

quadrature. These choices are all roots of specific types of Jacobi polynomials.   

 

The residual is formed by substitution of the approximate solution into the equation: 

 

∑ 𝑦(𝑥𝑖)
𝑑2ℓ𝑖

𝑑𝑥2

𝑛+1

𝑖=0

+ 𝑟 (𝑥, ∑ ℓ𝑖(𝑥)𝑦(𝑥𝑖)

𝑛+1

𝑖=0

) =  𝑅(𝑥, 𝒚) (3.8) 

Where y is the vector of nodal values y(xi). With the collocation method the residual is set to 

zero at the interior collocation points, xj, j = ρȟ ȣȟn . Since ℓi(xj) = δij (the dirac delta function), the 

resulting equation simplifies to: 

 
∑ 𝑦(𝑥𝑖)

𝑑2ℓ𝑖

𝑑𝑥2
|
𝑥𝑗

𝑛+1

𝑖=0

+ 𝑟 (𝑥𝑗, 𝑦(𝑥𝑗)) = 0 (3.9) 

By defining B as indicated below and letting 𝑦𝑖 = 𝑦(𝑥𝑖) the equation simplifies to: 

 
∑ 𝐵𝑗𝑖𝑦𝑖

𝑛+1

𝑖=0

+ 𝑟(𝑥𝑗, 𝑦𝑗) = 0 (3.10) 

The boundary conditions provide two additional conditions, either first kind, Dirichlet, boundary 

conditions: 

 𝑦0 = 𝑦𝑛+1 = 0  

or third kind, Robin, boundary conditions: 

 
∑ 𝐴0,𝑖𝑦𝑖

𝑛+1

𝑖=0

= 2𝐵𝑖𝑦0   and   − ∑ 𝐴𝑛+1,𝑖𝑦𝑖

𝑛+1

𝑖=0

= 2𝐵𝑖𝑦𝑛+1 (3.11) 

where: 

 
𝐴𝑗𝑖 =

𝑑ℓ𝑖

𝑑𝑥
|
𝑥𝑗

  and    𝐵𝑗𝑖 =
𝑑2ℓ𝑖

𝑑𝑥2
|
𝑥𝑗

   

For Dirichlet conditions, Eq. (3.3), the boundary values (whether zero or finite) are simply 

substituted into Eq. (3.10). For the third kind conditions, Eq. (3.1b), most texts [e.g. Finlayson 

(1972), p. 101; Villadsen and Michelsen (1978), p. 137; Trefethen (2000), p. 137; Boyd (2000), 

p. 111, Peyret (2002), p. 59] recommend that the boundary condition be satisfied exactly as in 

Eq. (3.11). We call this boundary collocation. We will have much more discussion on issues 

related to boundary derivatives or fluxes and will demonstrate methods that are superior to Eq. 

(3.11) in many cases. 

 

To solve the problem, we need only the collocation points, i.e. the roots of the orthogonal 

polynomial, and the A and B matrices, the derivatives of the Lagrange interpolating 

polynomials.  We also need the quadrature weights, W, for approximating integrals, e.g. Eq. 

(3.4). As described in chapter 2, all of these quantities can be calculated from the collocation 

points.   
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Eqs. (3.10) together with the boundary conditions are a set of algebraic equations. After 

substitution of the boundary values for Dirichlet  conditions, we are left with n equations which 

are usually nonlinear. A Newton-Raphson procedure works well for the nonlinear solution. If 

the reaction is linear, i.e. first order or 0th order, the solution is obtained after one Newton 

iteration. Given some estimate, ys, a single iteration to solve for the change to get an improved 

estimate requires solution of: 

 
∑ (𝐵𝑗𝑖 + 𝛿𝑗𝑖

𝜕𝑟

𝜕𝑦
|
𝑥𝑖,𝑦𝑖

𝑠

)

𝑛

𝑖=1

(𝑦𝑖
𝑠+1 − 𝑦𝑖

𝑠) = −∑ 𝐵𝑗𝑖𝑦𝑖
𝑠

𝑛

𝑖=1

− 𝑟(𝑦𝑗
𝑠, 𝑥𝑗) (3.12) 

To reduce roundoff errors, it is better to formulate the iterations with the residual and the 

change in y. 

 

The nonlinear reaction terms appear only on the diagonal, which simplifies the calculations.  

We shall see that for a full Moments or Galerkin method, the reaction terms are distributed 

throughout the matrix. 

 

Linear Source, Constant Coefficients, 

Dirichlet B.C.  Fig. 3.1 shows solutions of 

Eqs. (3.1) and (3.3) for a first order 

reaction and φ = 5, i.e. Eq. (3.2) with k = 

1.  Approximate solutions are shown with 
n = 4 for collocation at Lobatto, Gauss 

and Chebyshev points.  With this 

relatively high reaction rate most of the 

reaction occurs near the boundary.  The 

fifth order polynomial can only 

approximate the sharp profile by 

oscillating about the exact solution. 

Actually, since this problem is symmetric 

about x = 0.5, the coefficient of the fifth order 

term is zero. Later, we will look at efficient 

methods to exploit symmetry. Clearly, for this 

example, Lobatto points produce a more 

accurate solution followed in order by 

Chebyshev and Gauss points. 

 

Fig. 3.2 shows the L2 error norms versus n 

for the three choices of points. A plot of the L1 

error norm looks very similar. All methods 

show the typical exponential convergence 

with Lobatto points giving slightly better 
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results. The error with Chebyshev and Gauss points averages 1.3 and 1.9 times that with 

Lobatto points. 

 

Using Eq. (3.6), the normalized boundary flux, η = 0.199983. Numerical quadrature can be 

used to calculate this value from the numerical solutions using Eq. (3.4): 

 
𝜂 = ∑ 𝑊𝑖  𝑟̂(𝑥𝑖, 𝑦𝑖)

𝑛+1

𝑖=0

 (3.13) 

For the cases in Fig. 3.1 with n = 4, the calculated fluxes are in error by 0.8, -3.1 and -4.3 

percent for Lobatto, Chebyshev and Gauss points when the flux is calculated by Eq. (3.13).  

The same quantity can be approximated using Eq. (3.5). The derivatives are given by: 

 𝑑𝑦

𝑑𝑥
|
𝑥=0

= ∑ 𝐴0𝑖  𝑦𝑖

𝑛+1

𝑖=0

    and    
𝑑𝑦

𝑑𝑥
|
𝑥=1

= ∑ 𝐴𝑛+1,𝑖  𝑦𝑖

𝑛+1

𝑖=0

 (3.14) 

Using Eq. (3.14), the derivatives of the solution at the boundaries are in error by -14.3, -10.2 

and -4.3 percent for Lobatto, Chebyshev and Gauss points. These errors are much larger and 

the relative accuracy of the methods is a complete reversal of that found with Eq. (3.13).  Only 

Gauss points give the same result with either method of flux calculation. Shortly, we will 

explain why this is so. For the other two methods, integration gives a far more accurate result.  

 

Fig. 3.3 shows the flux errors for increasing 

n . Relative to Fig. 3.2, this graph shows a 

much greater difference between the 

methods. For n < 4, the error with all three 

methods is relatively large, while for n > 14, 

some of the results are affected by rounding 

errors. Engineering accuracy is obtained with 

4 to 8 points depending on the method and 

accuracy required. In this range, the errors 

with Gauss and Chebyshev points are 

similar, while Lobatto points give somewhat 

greater accuracy. 

 

Since Figs. 3.2 and 3.3 are so different let us take a closer look at these measures of the error. 

Given the exact solution, y*, the Lp error norm is a measure of the error in the internal profile: 

 

𝜖𝑝 = [∫ |𝑦 − 𝑦∗|𝑝𝑑𝑥
1

0

]

1
𝑝

 (3.15) 

The error in the normalized flux for this linear source function is: 

 
𝜖𝜂 = |∫ (𝑦 − 𝑦∗)𝑑𝑥

1

0

| (3.16) 
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These two error measures look similar, 

especially when p = 1. However, upon 

closer examination, it is clearly possible to 

achieve an exact flux with an imperfect 

solution which oscillates about the exact 

solution but in a way that gives the correct 

solution on average. To gain a better 

understanding of the nature of the error, 

Figs. 3.4 - 3.7 show the error, i.e. y – y*, and 

the residual, R in Eq. (3.7) for several cases.  

In Figs. 3.4 and 3.6 the residuals are, of 

course, zero at the collocation points, but 

we note that the errors shown in Figs. 3.5 

and 3.7 are very nearly zero at the 

collocation points and the positive and negative deviations from zero are nearly balanced, so it 

appears reasonable that the error calculated by Eq. (3.16) should be small. However, all of the 

points appear to exhibit this behavior, so why do the solutions converge more slowly with 

Chebyshev points? A simple experiment reveals why. If values from the analytical solution, Eq. 
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(3.3), are integrated using the quadrature formulas, Eq. (3.13), the error due exclusively to the 

quadrature is obtained. The quadrature errors are shown together with the errors from the 

approximate solutions in Fig. 3.8. By examination of Fig. 3.8 3.8we see that the errors with 

Chebyshev points (Clenshaw-Curtis quadrature) do not improve as much as the others. Even 

with the exact solution for the profile, the Chebyshev convergence rate and accuracy is worse 

than the results for the overall approximate solutions with the other two methods. 

 

Villadsen and Michelsen (1978) (p. 85) have noted that other methods may produce similar 

profile errors as we find here (see Fig. 3.2), but the Moments and Galerkin methods do an 

especially good job of balancing the error, so that the flux calculation is very accurate. It is 

fortunate that Gauss and Lobatto points tend to balance the error, because the flux is the most 

important result of the calculation. As we shall see, these two methods have equivalence to 

Moments and Galerkin methods, respectively. The Chebyshev points may also achieve this 

improvement, but the Clenshaw-Curtis quadrature is not accurate enough to take advantage of 

the more accurate solutions at the points. 

 

It is likely that the greater observed convergence rate of Galerkin and Moments methods is 

related to the long known superconvergence property of some finite element methods. The 

superconvergence phenomenon is one where the solution at certain points converges at a 

faster rate than the solution as a whole. Some collocation finite elements methods also display 

this property at the collocation points [Carey, et al. (1981)]. Since the global methods 

considered here are but a single element of a finite element procedure, it is likely the 

exceptional accuracy of the flux calculations in Fig. 3.3 is a related phenomenon. 

  

The error curves in Figs. 3.2 and 3.3 converge at a supergeometric rate, i.e. with (n)log(n), but 

are plotted versus log(n) as is customary. Lobatto points give the best convergence rate. 

Gauss points converge at the same rate, but the errors are about 10 to 15 times larger. The 

convergence rate with Chebyshev points is roughly half that with Gauss or Lobatto points. If 

derivatives are used to calculate the flux, Eq. (3.14), the results are poor with Lobatto or 

Chebyshev points. Gauss points produce the same result regardless of calculation method. 

Since all the methods give exponential convergence and the error norms are similar, one could 

easily be misled by an incomplete comparison.  Significant differences show up only when 

fluxes are compared. One of the advantages of orthogonal collocation or pseudospectral 

methods is that virtually exact solutions are feasible. The method with Lobatto points is 

superior for achieving high accuracy for this example, but only if fluxes are accurately 

calculated. 

  

Linear Source, Constant Coefficients, Third Kind B.C.  Now, consider the same problem as 

above, but with the third kind boundary conditions, Eq. (3.1b).  It is clear from Eqs. (3.3) and 

(3.5) that φ/Bi gives the relative importance of internal and external resistance. The shape of 

the profile is not changed, but the boundary value is scaled up to account for the external 

resistance. We present calculations here with φ = 5 as above and Bi = 10. For these conditions 
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both are important, but the external resistance is less important than the internal resistance. 

Other values of Bi are considered to determine its effect on the results. 

 

Most texts recommend that boundary collocation, Eq. (3.11), or an equivalent method, be used 

to approximate the boundary condition. Given that Fig. 3.3 shows poor accuracy of derivatives 

(Lobatto and Chebyshev) for calculating fluxes, one might question the suitability of this 

approach for all but Gauss points.  

 

Fig. 3.9 compares the profiles for 

solutions calculated with n = 4. Note that 

the boundary value of y is about 0.3, 

indicating roughly 30% of the resistence 

is external. The relative accuracy of the 

methods appear similar to that shown in 

Fig. 3.1 with Dirichlet conditions.  Fig. 

3.10 shows the L2 error norms are almost 

the same for Chebyshev and Gauss 

points and averages about 50 percent 

greater for Lobatto points. However, Fig. 

3.11 shows that the disparity in fluxes 

(calculated using Eq. (3.13)) is 

significant. Although, the differences are not large for n < 6, the differences in convergence 

rate are significant. As discussed below, similar flux errors persist even when Bi is so large that 

a Dirichlet condition is approached. 

 

I first became aware of this problem with flux boundary conditions from Ferguson (1971). It 

was pointed out at roughly the same time by Elnashaie and Cresswell (1973). The problem is 
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clearly evident for two different problems in Finlayson (1972) (see Table 5.7 and Fig. 5.7) 

Heretofore, the only generally known solution was to use Gauss points whenever a flux 

boundary condition was encountered. A superior alternative method can be found by 

examining other Methods of Weighted Residuals (MWR) and the foundation of orthogonal 

collocation. 

3.1.2 Moments Method  

To solve Eq. (3.1) by the method of moments, the residual is weighted by xk for k = 0,…,n  - 1; 

however, weighting by any linearly independent set of n polynomials through degree n - 1 will 

give identical results.  For example, we could use the first n Legendre polynomials and the 

results would be equivalent except for rounding errors. Another suitable set of linearly 

independent polynomials are the Lagrange interpolating polynomials for only the n interior 

points.  These polynomials are related to those in Eq. (3.7) by: 

 
ℓ𝑖

∗(𝑥) = ℓ𝑖(𝑥)
𝑥𝑖(1 − 𝑥𝑖)

𝑥(1 − 𝑥)
 (3.17) 

where the asterisk indicates the reduced polynomial. Using these weight functions in Eq. (1.4) 

together with the residual function, Eq. (3.7), and integrating numerically, the problem 

becomes: 

 

∑ [(∑ 𝑦𝑖

𝑑2ℓ𝑖

𝑑𝑥2
|
𝑥𝑘

𝑛+1

𝑖=0

) + 𝑟 (𝑥𝑘, ∑ ℓ𝑖(𝑥𝑘)𝑦𝑖

𝑛+1

𝑖=0

)]𝑊𝑘ℓ𝑗
∗(𝑥𝑘)

𝑚

𝑘=1

= 0 (3.18) 

for j = 1,…,n , where xk and Wk designate quadrature base points and weights, respectively, 

which are not yet specified. The method of Moments requires that all boundary conditions be 

satisfied exactly.  For Dirichlet conditions, Eq. (3.3), the boundary values are substituted.  For 

third kind conditions, Eq. (3.1b), Eq. (3.11) provides the two extra equations. 

   

For m > n the quadrature base points are naturally different from the nodal interpolation points 

used to define the trial functions, Eq. (3.7). If m = n , and the interpolation points correspond to 

the quadrature points, some wonderful simplifications occur.  For this case, Eq. (3.18) 

simplifies to: 

 

∑ 𝑊𝑗𝐵𝑗𝑖𝑦𝑖

𝑛+1

𝑖=0

+ 𝑊𝑗𝑟(𝑥𝑗, 𝑦𝑗) = 0 (3.19) 

Eq. (3.19) is equal to Eq.(3.10) when each row is multiplied by the quadrature weight, Wj, so 

the equations are equivalent. In order to make this approach work, we need a quadrature 

formula that will give an exact or accurate approximate integration of Eq. (3.18) with m = n 

and 0 < xi < 1.  The most accurate quadrature of this type is Gaussian quadrature. We now 

examine the accuracy of Gaussian quadrature for integration of Eq. (3.18). 

 

The trial functions, ℓi(x), are polynomials of degree n + 1, so the second derivative is of degree 

n – 1.  The weight functions, ℓj
*(x) are of degree n – 1.  Combining the two terms, the diffusion 



[10] 
 

term is of order 2n  – 2 and the first order reaction term is of order 2n .  Since Gaussian 

quadrature is exact for polynomials through degree 2n  – 1, integration of the diffusion terms is 

exact, while the source term misses exact integration by one degree. To achieve an exact 

representation of the Moments method, the following integration must be performed more 

accurately:  

 
𝐷𝑗𝑖 = ∫ ℓ𝑗

∗(𝑥)ℓ𝑖(𝑥) 𝑑𝑥
1

0

≈ 𝛿𝑗𝑖𝑊𝑗 (3.20) 

We call D the mass matrix and define D0,i = Dn+1,i = 0. With Gauss points it is approximated by 

the diagonal matrix of quadrature weights shown at the far right. In finite element methods, the 

reduction of the mass matrix to a diagonal one is called lumping. Lumping is achieved 

automatically here due to the approximate integration. 

 

To list the complete set of equations, it is convenient to combine the boundary and interior 

equations by defining:  

 𝐶𝑗𝑖 = 𝛿𝑗,𝑛+1𝐴𝑛+1,𝑖 − 𝛿𝑗,0𝐴0,𝑖 − 𝑊𝑗𝐵𝑗𝑖 (3.21) 

With this definition, the complete set of equation for the first order reaction with constant 

coefficients and third kind boundary conditions is: 

 
𝛿𝑗,02𝐵𝑖𝑦0 + 𝛿𝑗,𝑛+12𝐵𝑖𝑦𝑛+1 + ∑(𝐶𝑗𝑖 + 4𝜑2𝐷𝑗𝑖)𝑦𝑖

𝑛+1

𝑖=0

= 4𝜑2 ∑ 𝐷𝑗𝑖

𝑛+1

𝑖=0

= 4𝜑2𝑊𝑗 (3.22) 

C is a symmetric matrix which we call the stiffness matrix. For the full Moments method the 

complete matrix problem is not symmetric because of D, but with its diagonal approximation 

the complete system of equations is symmetric and positive definite. One deficiency of 

orthogonal collocation or pseudospectral methods is that self adjoint operators do no lead to 

symmetric matrix problems. This development shows that by a simple rescaling of the 

equations this desirable feature is achieved with Gauss points. A symmetric matrix problem 

cuts the calculations for solution almost in half (Fadeeva, 1959). For nonlinear reaction terms, 

the mass matrix must be recalculated every Newton iteration. These extra calculations are 

rarely worth the effort. We discuss more complicated source terms below.  

 

Lobatto quadrature with m = n has sufficient accuracy to integrate all the terms in Eq. (3.18) 

exactly for a first order reaction. However, it does not reduce to a collocation method because 

end points terms would appear in Eq. (3.19). These terms are zero with Gauss points, because 

the quadrature weights are zero on the boundaries.  Orthogonal collocation at Lobatto 

quadrature base points bears no direct relationship to the Moments method.  With Chebyshev 

points, the associated Clenshaw-Curtis quadrature also has nonzero quadrature weights at the 

endpoints. In addition, Clenshaw-Curtis quadrature is not accurate enough to produce a good 

approximation to the Moments method. For these reasons, it also bears no direct relationship 

to the Moments method. 

 

The mass and stiffness matrices, D and C in Eqs. (3.20) and (3.21), are available from the 

computer codes described in Chapter 2.   
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3.1.3 Galerkin Method  

To solve the problem with the Galerkin method, the residual is weighted by the trial functions 

Љj(x). Since the Robin boundary conditions reduce to Dirichlet conditions for large Bi number, 

we will consider only the more general conditions, Eq. (3.1b). The Galerkin method permits two 

different methods to treat boundary conditions involving derivatives. The boundary conditions 

may be satisfied exactly or they may be treated as natural boundary conditions (see for 

example Finlayson (1972)). The normal procedure with the orthogonal collocation or 

pseudospectral method is to satisfy the boundary conditions exactly, i.e. boundary collocation, 

Eq. (3.11). The short development in Appendix B shows the difficulties with this approach. For 

this reason, we will use the natural boundary condition treatment here. With this approach the 

boundary condition is satisfied approximately along with the rest of the differential equation. 

 

To solve the problem with the Galerkin method, the residual Eq. (3.7) is weighted by the trial 

functions ℓj(x), for j = 0,…,n  + 1.  The equations are converted to the weak formulation by 

integrating the second derivative term by parts: 

 

∑ ℓ𝑗

𝑛+1

𝑖=0

𝑑ℓ𝑖

𝑑𝑥
|
0

1

𝑦𝑖

 

− ∫ (∑
𝑑ℓ𝑗

𝑑𝑥

𝑛+1

𝑖=0

𝑑ℓ𝑖

𝑑𝑥
𝑦𝑖 − ℓ𝑗𝑟(𝑥, 𝑦))𝑑𝑥

1

0

= 0 (3.23) 

The first term contains the two boundary derivatives, so we substitute the boundary conditions 

and integrate the other terms using a suitable quadrature formula: 

 

𝛿𝑗,02𝐵𝑖𝑦0 + 𝛿𝑗,𝑛+12𝐵𝑖𝑦𝑛+1 + ∑ 𝑊𝑘 (∑
𝑑ℓ𝑗

𝑑𝑥
|
𝑥𝑘

𝑛+1

𝑖=0

𝑑ℓ𝑖

𝑑𝑥
|
𝑥𝑘

𝑦𝑖 − ℓ𝑗(𝑥𝑘) 𝑟(𝑥𝑘 , 𝑦(𝑥𝑘)))

𝑚

𝑘=1

= 0 (3.24) 

The xk in Eq. (3.24) designate the quadrature base points, which differ from the nodal 

interpolation points for m > n . Since the trial functions are polynomials of degree n +1, the 

diffusion term is of degree 2n .  For a first order reaction the source term is of degree 2n +2.  An 

n point Gaussian quadrature is exact through degree 2n  -1, so neither term would be 

integrated exactly.  On the other hand, Lobatto quadrature with n interior points gives exact 

integration through degree 2n +1, so it gives exact integration for the diffusion term, but misses 

exact integration of the reaction term by one degree. This is the same level of discrepancy 

found when the Moments method is approximated with Gaussian quadrature. Using Lobatto 

quadrature with n interior points, Eq.(3.24) reduces to: 

 

𝛿𝑗,02𝐵𝑖𝑦0 + 𝛿𝑗,𝑛+12𝐵𝑖𝑦𝑛+1 + ∑ 𝐶𝑗𝑖

𝑛+1

𝑖=0

𝑦𝑖 − 𝑊𝑗  𝑟(𝑥𝑗, 𝑦𝑗) = 0 (3.25) 

where: 

 
𝐶𝑗𝑖 = 𝛿𝑗,𝑛+1𝐴𝑛+1,𝑖 − 𝛿𝑗,0𝐴0,𝑖 − 𝑊𝑗𝐵𝑗𝑖 = ∑ 𝑊𝑘𝐴𝑘𝑗𝐴𝑘𝑖  

𝑛+1

𝑘=0

 (3.26) 

Since Lobatto quadrature can perform the integration by parts exactly, it follows that the 

stiffness matrix, C, can be calculated by either expression above. The left expression is 

identical to Eq. (3.21).  Given this relationship, it is clear that at the interior points, Eq. (3.25) is 
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identical to Eq. (3.19) and equivalent to Eq. (3.10). From this development and the 

development in Appendix B, we conclude collocation at Lobatto points is a close approximation 

of the Galerkin method, but only when a natural boundary condition treatment is used. 

  

To examine the different treatment of the boundary conditions, we compare Eqs. (3.11) and 

(3.25) at the boundaries, j = 0 and j = n + 1. Using the left expression of Eq. (3.26) for C, the 

boundary equations are: 

 

2𝐵𝑖𝑦0 − ∑ 𝐴0𝑖𝑦𝑖

𝑛+1

𝑖=0

− 𝑊0 (∑ 𝐵0𝑖𝑦𝑖

𝑛+1

𝑖=0

+ 𝑟(0, 𝑦0)) = 0 

2𝐵𝑖𝑦𝑛+1 + ∑ 𝐴𝑛+1,𝑖𝑦𝑖

𝑛+1

𝑖=0

− 𝑊𝑛+1 (∑ 𝐵𝑛+1,𝑖𝑦𝑖

𝑛+1

𝑖=0

+ 𝑟(1, 𝑦𝑛+1)) = 0 

(3.27) 

Eq. (3.27) differs from (3.11) by the extra term on the right. It is the boundary quadrature 

weight multiplying the residual, Eq. (3.8), evaluated at the boundaries x = 0 and x = 1. This 

procedure sets the combination of the two residuals to zero. The boundary condition is not 

satisfied exactly, but both residuals will converge to zero at an exponential rate. For an infinite 

Bi number, Eq. (3.27) reduces to the Dirichlet conditions, y0 = yn+1 = 0. 

 

Eq. (3.27) is equally valid for Gauss points, since the quadrature weights are zero at the 

boundaries. Note also that the left expression of Eq. (3.26) and Eq. (3.21) are identical for the 

calculation C. The right expression of Eq. (3.26) is not valid for Gauss or Chebyshev points, 

because the quadrature is not accurate enough to perform the integration by parts exactly. 

  

Lobatto quadrature calculates the second derivative term exactly, but misses exact integration 

of the source term by one degree. For the first order reaction, the full Galerkin method requires 

a more accurate calculation of the mass matrix: 

 
𝐷𝑗𝑖 = ∫ ℓ𝑗(𝑥)ℓ𝑖(𝑥) 𝑑𝑥

1

0

≈ 𝛿𝑗𝑖𝑊𝑗  (3.28) 

Collocation at Lobatto points approximates this matrix by a diagonal one composed of the 

quadrature weights. Substituting a more accurate integration of the source term into the 

Galerkin method, Eq. (3.24), produces an equation identical in form to Eq. (3.22). For the 

Galerkin method, both the stiffness and mass matrices are symmetric. The mass matrix is full 

for the Galerkin method and is diagonal or lumped for collocation at Lobatto points.  For more 

complex rate expressions, a full mass matrix adds complexity and calculations which do not 

normally improve the accuracy enough to warrant the extra calculations. 

 

From this discussion we conclude that orthogonal collocation with Lobatto quadrature base 

points and a natural treatment of flux boundary conditions is an accurate approximation to the 

Galerkin method. Gaussian quadrature is not accurate enough to integrate even the second 

order term exactly. We have already shown that it is a much better approximation of the 

Moments method. The Clenshaw-Curtis quadrature is not accurate enough to give a good 
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approximation to either the Galerkin or Moments method. However, the Chebyshev points and 

quadrature weights are between Gauss and Lobatto points and weights (see Fig. 1.1) which 

gives some confidence that they should work. Their use is supported primarily by 

approximation theory and not integrated MWR. It would be beneficial if the flux errors shown in 

Fig. 3.11 could be reduced. We propose the use of Eq. (3.25) with C calculated by Eq. (3.21) or 

the left expression of Eq. (3.26).  We will call this a natural boundary condition treatment also 

even though the quadrature does not produce an accurate approximation of the Galerkin 

method. Similar procedures have been proposed by Canuto (1986) and Funaro (1988).  

 

Formulations using the stiffness matrix and a natural treatment of flux boundary conditions are 

referred to as weak formulations. Unlike with Gauss and Lobatto points, the stiffness matrix for 

Chebyshev points is not symmetric (except for n < 4). Consequently, almost twice the 

computations are required to solve matrix problems. Also note the natural boundary condition 

treatment causes boundary rate terms to appear in the approximation, Eq. (3.27). For a 

nonlinear rate expression, all n + 2 equations are nonlinear, whereas with Gauss points the 

two boundary equations are linear.  These linear equations can be eliminated initially so only n 

nonlinear equations must be solved iteratively. 

 

Linear Source, Constant Coefficients, Third Kind B.C., Galerkin/Moments  Fig. 3.12 

shows the flux errors from Fig. 3.11 updated with results from full Galerkin and Moments 

methods and Lobatto and Chebyshev collocation with a natural treatment of the boundary 

conditions.  These results are labeled “Nat.” while the boundary collocation results are labeled 

“Coll.”.  

 

The improvement by using natural 

boundary conditions is impressive, 

especially with Lobatto points. With the 

natural boundary condition treatment, the 

convergence rates for the three point 

choices are similar to those in Fig. 3.3. 

Since the problem reduces to the Dirichlet 

problem for large Bi, the effect of this 

parameter was investigated by solving the 

problem with Bi = 2, 5, 10 and 50 for 

comparison. With the largest value the 

condition approaches a Dirichlet condition. 

For the Lobatto point cases in Fig. 3.12 with n = 8, the ratio of the error with boundary 

collocation relative to a natural treatment, is 1.4x103. This error ratio at n = 8 varies from 7x103 

for Bi = 2 to 3x102 for Bi = 50. The convergence rates are similar, so the disparity grows with n . 

Clearly, the error with boundary collocation can be several orders of magnitude greater even 

for quite large values of Bi. The errors with Chebyshev points are also reduced by using a 
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natural boundary condition treatment, but to a lesser extent, but still almost an order of 

magnitude at n = 8.  

 

As discussed above, the natural 

boundary condition treatment, Eq. (3.27), 

sets a combination of the boundary 

condition and the boundary value of the 

interior residual to zero. Neither residual 

will be identically zero, but they converge 

to zero at an exponential rate. Fig. 3.13 

shows the convergence behavior of 

these two residuals as a function of n for 

Bi = 10. Graphs for the other values of Bi 

are very similar. As shown in Eq. (3.27), 

the ratio of the two residuals is equal to 

the boundary quadrature weight, W0 and 

Wn+1 which are O(1/(2n 2)) for Lobatto quadrature and half that for Clenshaw-Curtis quadrature 

(Chebyshev points).   

 

We also note that in Fig. 3.12 the Galerkin and Moments methods improve in a stair step 

fashion. When n is even, the results with Galerkin and Lobatto points are identical and the 

results with Moments and Gauss points are identical. This result is an artifact caused by the 

symmetry of the solution about x = 0.5 for this particular problem. For example, with n = 4 the 

trial solution is a 5th order polynomial, but the highest order term has a zero coefficient 

because of the symmetry. Lobatto points normally miss exact integration of the Galerkin 

method by one degree, but since the problem symmetry knocks out the highest degree the two 

methods agree. With n = 3 the polynomial is 4th order, so the Galerkin method is just as good 

as when a 5th order term is included. An analogous situation applies for the Moments method 

and collocation at Gauss points.  

 

When the differential equation contains values of the dependent variable (y in this case), not 

exclusively its derivatives, this very special set of circumstances, i.e. linear, constant coefficient 

and symmetric solution, are the only times when collocation at Lobatto points is identical to a 

Galerkin method and collocation at Gauss points is identical to the Moments method.  If the 

source r(x,y) in Eq. (3.1) is dependent only on x and is a polynomial of degree n or less, 

Lobatto points is identical to the Galerkin method and Gauss points is identical to the Moments 

method. Other conditions can easily be evaluated by determining the degree of polynomial 

which must be integrated. Usually, Gauss and Lobatto points give approximations to the 

Moments and Galerkin methods, but often very good ones. Some texts incorrectly state that 

collocation at Gauss points replicates the Galerkin method for more general conditions [Boyd 

(2000), p. 89]. This particular example problem can be treated much more efficiently by using 

polynomials in x2, which we discuss below. 
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3.1.4 Mass Conservation and Fluxes 

One is usually interested in the flux at the boundaries.  For example, if a fluid were flowing on 

both sides of the slab we would want to know the rate of mass or heat transfer from the slab.  

For the symmetric problem, the transfer is quantified by a single normalized flux, η given by 

Eqs. (3.4) and (3.5). For a nonsymmetric problem one would generally want the breakdown of 

left and right side fluxes, while in multiple dimensions the flux profiles along the boundaries 

may be important. The average energy equation or divergence theorem gives only the total 

flux. If the sum of the individual fluxes (or integral of the boundary profiles in multiple 

dimensions) equals the total flux, this gives us greater confidence in the individual values. The 

total of the fluxes will give the average rate provided the method conserves mass. Eq. (3.5) is 

derived by integrating Eq. (3.1) across the domain.  In general, a method will be conservative if 

the integral of the residual is zero. If in Eq. (1.4), one or a combination of the weight functions, 

wi(x) = 1, the method will be conservative. 

  

Moments and collocation at Gauss points are conservative because for the weights in our 

formulation,ä =1)x(*

i? .  Since these methods are conservative, Eq. (3.5) is obeyed when the 

boundary fluxes are calculated by differentiation of the approximate solution, Eq. (3.14). This 

explains why the errors in Fig. 3.3 are the same with either method of calculation for 

collocation at Gauss points. 

 

For the Galerkin method and collocation at Lobatto points, the sum of all the Lagrange 

interpolating polynomials is also unity.  However, if we consider Dirichlet boundary conditions, 

the boundary values are directly substituted into Eq. (3.7) so the first and last interpolating 

polynomials are not used as weight functions.  The method appears not to be conservative due 

to the left over terms on the right side below: 

 𝑑𝑦

𝑑𝑥
|
0

1

+ ∫ 𝑟(𝑥, 𝑦) 𝑑𝑥
1

0

= ∫ [ℓ0(𝑥) + ℓ𝑛+1(𝑥)]𝑅(𝑥, 𝒚)𝑑𝑥
1

0

 (3.29) 

Using quadrature, Eq. (3.29) is approximated by: 

 𝑑𝑦

𝑑𝑥
|
0

1

+ ∫ 𝑟(𝑥, 𝑦) 𝑑𝑥
1

0

= 𝑊0𝑅(0, 𝒚) + 𝑊𝑛+1𝑅(1, 𝒚) (3.30) 

The two terms on the right side are those needed to correct the fluxes in the natural boundary 

condition treatment, Eq. (3.27), so the correction makes the method conservative. To be 

consistent with the Galerkin method, the individual fluxes should be approximated by:  

 
𝑑𝑦

𝑑𝑥
|
𝑥=0

= ∑ 𝐴0𝑖𝑦𝑖

𝑛+1

𝑖=0

+ 𝑊0 (∑ 𝐵0𝑖𝑦𝑖

𝑛+1

𝑖=0

+ 𝑟(0, 𝑦0)) 

𝑑𝑦

𝑑𝑥
|
𝑥=1

= ∑ 𝐴𝑛+1,𝑖𝑦𝑖

𝑛+1

𝑖=0

− 𝑊𝑛+1 (∑ 𝐵𝑛+1,𝑖𝑦𝑖

𝑛+1

𝑖=0

+ 𝑟(1, 𝑦𝑛+1)) 

(3.31) 

The same equations written with the stiffness matrix are: 
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 𝑑𝑦

𝑑𝑥
|
𝑥=0

= − ∑ 𝐶0𝑖𝑦𝑖

𝑛+1

𝑖=0

+ 𝑊0𝑟(0, 𝑦0) 

𝑑𝑦

𝑑𝑥
|
𝑥=1

= ∑ 𝐶𝑛+1,𝑖𝑦𝑖

𝑛+1

𝑖=0

− 𝑊𝑛+1𝑟(1, 𝑦𝑛+1) 

(3.32) 

When computed from these equations, the two fluxes will be consistent with Eq. (3.5), the 

average energy equation or divergence theorem. For the full Galerkin method, the fluxes must 

be calculated with the equivalent expression using the mass matrix, D. For the Robin boundary 

conditions the expressions are consistent with Eq. (3.1b), so it would be far simpler to calculate 

fluxes by multiplying 2Bi by the boundary values of y.  However, this calculation is subject to 

roundoff errors when Bi is large and the boundary conditions are not homogenous.  

 

Note that Eqs. (3.31) and (3.32) are also valid with Gauss points, since the boundary 

quadrature weights are zero. This equivalence is useful when writing one computer code which 

will work with either type of points, provided one is not averse to a few unnecessary 

calculations. Using these equations with Chebyshev points will also make that method 

conservative, which provides some additional justification for using a natural treatment with 

Chebyshev points. 

 

Linear Source, Variable Coefficients, Dirichlet B.C.  To make the problem nonsymmetric 

and more interesting, consider the case of a first order source, but with a coefficient which 

varies with position according to: 

 𝑟̂(𝑥, 𝑦) = (0.2 + 1.6𝑥2(3 − 2𝑥))(1 − 𝑦) = 𝑞(𝑥)(1 − 𝑦) (3.33) 

The spatial variation, q(x), goes from 0.2 on the left edge to 1.8 on the right edge, with an 

average value of 0.5 on the left half and 1.5 on the right half giving an overall average of 1.0. 

For a given value of φ, the average rate constant is the same as with Eq. (3.2) for k = 1. Fig. 

3.14 shows solutions to this problem for φ = 5 with collocation at Gauss, Chebyshev, and 

Lobatto points.  The solution with Lobatto points is again slightly more accurate than with the 

other two choices. In Fig. 3.14, the “exact” solution is actually one computed with large n 

which is exact for practical purposes. 

 

When the problem is solved with the Galerkin or Moments method a more accurate mass 

matrix must be calculated.  For many problems, especially nonlinear ones, an exact calculation 

would be cumbersome and is not necessary. Approximate calculations with quadrature 

formulas are most often used. Orthogonal collocation is a special case of approximate 

quadrature, when the interior quadrature points and collocation points coincide. Another 

common procedure is to interpolate variable or nonlinear terms into the trial space, i.e.: 

 
𝑟(𝑥, 𝑦) ≈ ∑ ℓ𝑖(𝑥)𝑟(𝑥𝑖, 𝑦(𝑥𝑖))

𝑛+1

𝑖=0

 (3.34) 

For the Moments method, these various approaches give: 



[17] 
 

 
𝐷𝑗𝑖 = ∫ ℓ𝑗

∗(𝑥)ℓ𝑖(𝑥)𝑞(𝑥) 𝑑𝑥
1

0

≈ ∑ 𝑊𝑘ℓ𝑗
∗(𝑥𝑘)ℓ𝑖(𝑥𝑘)𝑞(𝑥𝑘) 

𝑚

𝑘=1

  or 

≈  𝑞(𝑥𝑖)∫ ℓ𝑗
∗(𝑥)ℓ𝑖(𝑥) 𝑑𝑥

1

0

  or 

≈  𝑞(𝑥𝑗) 𝑊𝑗  𝛿𝑖𝑗  

(3.35) 

Where the asterisk denotes the reduced 

functions defined by Eq. (3.17) and D0i = 

Dn+1,i = 0 for the Moments method. For the 

Galerkin method the trial functions, ℓj(x), 

are used instead of the reduced functions. 

The approximation with quadrature is 

given on the first line, while the 

approximation for interpolation into the trial 

space, Eq. (3.34), is given on the second 

line. Finally, the approximation using 

collocation is given on the last line. Once 

calculated, the mass matrix is substituted 

into Eq. (3.22). The collocation 

approximation reduces to Eq. (3.25). As Bi 

→ ∞ the equations reduce to specified boundary values, i.e. Dirichlet conditions.  

 

When the mass matrix is calculated with quadrature, one must select the quadrature formula 

and the number of quadrature base points, m in Eq. (3.35). We select Gaussian quadrature for 

the Moments method and Lobatto quadrature for the Galerkin method. In the discussion above 

for the constant coefficient problem, when comparing collocation at Gauss points with the 

Moments method and collocation at Lobatto points with the Galerkin method, we found 

collocation missed exact integration by one degree. The variable coefficient for this example, 

q(x) in Eq. (3.33), is degree 3. For the Galerkin method, both the trial functions and weight 

functions are of degree n + 1, while the weight functions are n – 1 degree for the Moments 

method. Table 3.1 summarizes the degree of the mass matrix integrands in Eq. (3.35) and 

compares it to the accuracy of Gaussian and Lobatto quadrature.  With the cubic variation, 

both miss exact integration by four degrees, so to achieve exact integration with quadrature 

requires in each case, two additional quadrature points. 
 

Table 3.1 Integrand Degree for Mass Matrix Calculation, Eq. (3.35) 

 without spatial 
variation 

interpolated 
source term, 

with spatial 
variation, Eq. (3.33) 

Gaussian Quadrature 2n  - 1 2n  - 1 2n  - 1 

Moments Method 2n  2n  2n  + 3 

Lobatto Quadrature 2n  + 1 2n  + 1 2n  + 1 

Galerkin Method 2n  + 2 2n  + 2 2n  + 5 
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This example provides a good test of the integration accuracy requirements, because with only 

one additional quadrature point, the integration is still two degrees shy of exact. So, besides 

collocation and the Galerkin method there are two additional ways to approximate D: (1) 

interpolation of the source terms, Eq. (3.34) and (2) approximate integration with n + 1 interior 

quadrature points.  Similarly, there are two approximate methods of calculating D for the 

Moments method. All of these possibilities give a large volume of results for this problem. 

 

Fig. 3.14 shows the calculated results with collocation using the three choices of collocation 

points.  Fig. 3.15 compares collocation at Gauss points with the Moments method using both 

an exact mass matrix and interpolated rates. Fig. 3.16 compares collocation at Lobatto points 

with the Galerkin method. For the Galerkin method, the other approximations were not 

distinguishable from those in Fig. 3.16.  

 

Table 3.2 shows results of the flux calculations for this problem when n = 4. For the results in 

the table, “n = 5” indicates the number of interior quadrature points used in the calculation of 

the mass matrix and “interpolated r” indicates those for which Eq. (3.34) was used. In these 

results Eq. (3.31) or (3.32) was used to calculate the fluxes for Lobatto or Chebyshev points, or 

the equivalent method for the Galerkin method. The table results labeled, “derivative”, 

indicates Eq. (3.14) was used to calculate the fluxes. From Fig. 3.15 it does not appear that the 

additional complexity of the Moments method and a full mass matrix, D, adds any substantial 

accuracy to the results. However, Table 3.2 indicates there is some improvement, but the 

improvement is spotty. Some flux errors are larger, especially those at x = 0, which is the 

“easy” side due to the more gentle profile. Fig. 3.16 indicates that relative to Lobatto 

collocation, the Galerkin method gives a small improvement to the profiles. Table 3.2 shows 

that with the Galerkin method, the right side and total errors are reduced by about a factor of 3. 

Also, a Galerkin approximate mass matrix with 5 interior points is very nearly as good as an 

exact mass matrix. 
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Fig. 3.17 shows the L2 error norms versus n . As before, the L1 and L2 errors are relatively 

insensitive to differences between the methods. The ratio of best to worst error averaged over 

all n from 2 to 16 is only about 2. The ratio of the average error relative to the Galerkin method 

for Lobatto, Chebyshev and Gauss collocation is 1.02, 1.36 and 2.03, respectively.  

 

Fig. 3.18 shows the error of the flux on the right side, x = 1, for all the methods. The graph is 

busy due to all the results, but it is worthwhile to examine the effect of approximate and exact 

integration for the Galerkin and Moments methods, since Gauss and Lobatto collocation are 

also approximations. In this graph, the results labeled “Interp” are for the interpolated source 

terms, Eq. (3.34) and those labeled “n+1” use one additional quadrature point to give a full but 

approximate mass matrix. “Der” is used to indicate fluxes estimated by the first derivative. The 

other methods calculate fluxes using Eq. (3.31) or (3.32) (or equivalent for Galerkin).  

Table 3.2 Calculated Fluxes, Variable Coefficients, n = 4 

 Flux  
left 

Flux 
right 

Flux  
Total 

Error 
left 

Error 
right 

Error 
total 

Exact  0.05062 0.13368 0.18429    
Gauss Collocation 0.05013 0.12097 0.17110 -0.96% -9.51% -7.16% 
Chebyshev Collocation 0.05026 0.12910 0.17936 -0.71% -3.42% -3.68% 
Lobatto Collocation 0.05073 0.13742 0.18814 0.21% 3.80% 3.09% 
Moments 0.04902 0.12598 0.17500 -3.16% -5.76% -5.04% 
Moments, interpolated r 0.04623 0.12473 0.17097 -8.66% -6.69% -7.23% 
Moments, n  = 5 Gauss 0.04903 0.12654 0.17557 -3.14% -5.34% -4.73% 
Galerkin 0.05053 0.13561 0.18614 -0.17% 1.45% 1.00% 
Galerkin, interpolated r 0.05070 0.13601 0.18671 0.16% 1.75% 1.31% 
Galerkin, n  = 5 Lobatto 0.05055 0.13583 0.18638 -0.13% 1.61% 1.13% 
Chebyshev, derivative 0.04795 0.11116 0.15911 -5.27% -16.84% -13.66% 
Lobatto, derivative 0.04666 0.10497 0.15163 -7.82% -21.47% -17.73% 
Galerkin, derivative 0.03953 0.10974 0.14927 -17.21% -16.93% -17.00% 
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Table 3.3 Average Relative Error 
of Flux at x = 1, Variable 
Coefficients, Eq. (3.33) 

 Relative  
Error 

Gauss Collocation 17.73 
Chebyshev Collocation 193.69 
Lobatto Collocation 2.37 
Moments 8.61 
Moments, interpolated r 13.84 

Moments, n + 1 Gauss 7.57 
Galerkin 1.00 
Galerkin, interpolated r 1.70 

Galerkin, n + 1 Lobatto 0.76 

 

 

Again, the results calculated from the first derivative are much less accurate except for the 

Gauss-collocation and Moments methods for which they are identical. All of the evidence 

shows that for other methods derivatives, Eq. (3.14), should never be used to estimate fluxes. 

If the reader takes this one result to heart, writing this article will have been worthwhile. 

 

Fig. 3.18 shows that the Galerkin method is 

generally the best method, but frequently the 

approximate mass matrices give results that are just 

as good. Exact integration of the mass matrix gives 

no clear improvement for the Moments method 

either. Due to the large number and variability of the 

results in Fig. 3.18, they are further summarized in 

Table 3.3. Table 3.3 lists the ratio of the error for the 

individual method relative to the Galerkin method 

geometrically averaged for n = 2 through 16. There 

could be other ways to summarize these results, but 

this method yields several clear conclusions. The 

full Galerkin and Moments methods are about twice 

as accurate as the respective collocation counterparts (Lobatto and Gauss points). 

Interpolation of the source terms adds only a slight improvement over collocation. One 

quadrature point greater than collocation is on the average slightly better than an exact 

Galerkin or Moments method. This type of behavior has been observed in finite element 

methods (Strang and Fix (1973)). If one considers the computational effort, collocation will 

invariably win. However, if a full Galerkin or Moments method is desired it is wasteful to get 

carried away with extremely accurate integration. 

 

The Gauss/Moments methods give errors that are about 8 times larger than the 

Lobatto/Galerkin counterparts. This factor is approximately the amount the error decreases 

with each increment of n , so the Gauss methods require roughly one additional point for 

equivalent accuracy. In compensation for this difference, the treatment of flux boundary 

conditions is simpler and more intuitive, Eq. (3.11) rather than (3.25) or (3.27), and the usually 

nonlinear source terms appear only at the n interior points. The simplicity of using boundary 

collocation is one reason for the popularity of Gauss points. The natural boundary condition 

treatment required to achieve good accuracy with the other choices has not generally been 

considered previously. 

 

Relative to the other methods, Chebyshev collocation is not competitive when flux calculations 

are carried out as normally recommended. With the improved flux calculations, Eq. (3.31) or 

(3.32), the results are good for small n , but suffer from a lower convergence rate for n > 6. 

When compared to the other choices, the case supporting the use of Chebyshev points is:  

- x and W can be efficiently calculated 
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- theoretical support from approximation theory 

- justified by point distribution relative to other methods 

On the other side of the argument: 

- efficiency of x and W calculation relatively unimportant 

- poor approximation to integrated MWR methods (Galerkin, Moments) 

- convergence rates sometimes slower than with Gauss or Lobatto points 

- less efficient calculations due to nonsymmetric matrices 

The argument concerning point distributions is an interesting one. Many view the collocation 

point selection problem strictly from the standpoint of point distributions. Since Chebyshev 

points are between Gauss and Lobatto points (see Fig. 1.1), the results should be intermediate 

between them. If we compare the profiles and error norms that argument holds up, but it falls 

apart when comparing fluxes. The other characteristic to consider is that Gauss and Lobatto 

quadrature are both accurate for O(2n ), while Clenshaw-Curtis quadrature is accurate for 

O(n ), see Figs. 3.8, 2.8 and 2.9. This difference in accuracy is the reason Chebyshev 

collocation is not a good approximation of other integrated MWR. It appears that the 

differences are not so important for small n , but perhaps the quadrature accuracy affects the 

convergence rate for fluxes at large n . Further analysis on this subject is warranted.  

 

Proponents for the use of Chebyshev points cite the greater efficiency for computing the 

fundamental approximations, x and W. This advantage is irrelevant for most problems, but 

could become important for very large n , say n > 100. “Back in the day”, we computed the 

arrays once and punched the results out on cards, which were then added to the deck used to 

solve applications.  A modernized version of this technique could certainly be used today, 

requiring no calculation.  Also, one can make the argument that if a problem requires n > 10, 

finite element trial functions will likely be more efficient in most cases. One can base these 

methods on orthogonal collocation and construct such methods with any desired order of 

accuracy. 

 

Many authors bemoan the lack of symmetry for collocation or pseudospectral approximations 

for self adjoint operators. When conventionally formulated, all methods suffer from this 

deficiency. However, a simple rescaling of the equations with the quadrature weights makes 

the method symmetric for Gauss and Lobatto points, see Eq. (3.19) and (3.25). The number of 

arithmetic operations to solve a symmetric matrix problem is roughly half that for a 

nonsymmetric problem (Fadeeva, 1959). There are theoretical and computational advantages 

for other problems as well, e.g. eigenvalue problems for parabolic equations in Chapter 4. 

These computational advantages tend to offset any advantages of Chebyshev points. 

3.1.5 Symmetric Problems 
Consider now the diffusion/conduction problem similar to Eq. (3.1), but for which the solution is 

symmetric about the centerline, x = ½.  We renormalize the coordinates to place the centerline 
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at x = 0, while the outer boundary remains at x = 1. The governing equation for planar, 

cylindrical and spherical geometry (γ = 0,1,2 respectively) is: 

 1

𝑥𝛾

𝑑

𝑑𝑥
(𝑥𝛾

𝑑𝑦

𝑑𝑥
) + 𝑟(𝑦) = 0 (3.36) 

with  

 𝑑𝑦

𝑑𝑥
|
𝑥=1

+ 𝐵𝑖 𝑦(1) = 0    and    
𝑑𝑦

𝑑𝑥
|
𝑥=0

= 0 (3.37) 

By using symmetric trial functions, the condition at x = 0 is automatically satisfied. For planar 

geometry, γ = 0, Eq. (3.36) is equivalent to Eq. (3.1) and (3.1b) when the source is not 

dependent on x. The third kind or Robin condition is used at x = 1, since it reduces to a 

Dirichlet condition when Bi goes to infinity. Here we consider nonlinear source functions in 

addition to different geometries. Since the solution will be symmetric, we use trial functions 

which are Lagrange interpolating polynomials in x2, Eq. (1.7):  

 

𝑦(𝑥2) = ∑ 𝑦(𝑥𝑖)ℓ𝑖(𝑥
2)

𝑛+1

𝑖=1

 (3.38) 

Although the application of a Method of Weighted Residuals (MWR) is fundamentally the 

same, the geometry and symmetric trial functions cause some subtle differences to occur.  

Substituting the trial functions, the residual for the problem is: 

 
𝑅(𝑥, 𝒚) =  ∑ 𝑦𝑖

1

𝑥𝛾

𝑑

𝑑𝑥
(𝑥𝛾

𝑑ℓ𝑖(𝑥
2)

𝑑𝑥
)

𝑛+1

𝑖=1

+ 𝑟(𝑦(𝑥2)) = 0 (3.39) 

With the collocation method, the residual is set to zero at the interior collocation points,  j = 

1,…,n  and the boundary condition provides the final equation. The usual recommendation is to 

apply boundary collocation, but from the previous examples (see Fig. 3.12) we found this to be 

the best approach only for Gauss points. A natural boundary condition treatment is better in 

general. Using conventional collocation at interior points and a natural boundary condition 

treatment the equations are: 

 
∑ 𝐵𝑗𝑖𝑦𝑖

𝑛+1

𝑖=1

+ 𝑟(𝑦𝑖) = 0 (3.40) 

at the interior points, i.e. j = 1,…,n  and from the boundary condition: 

 

𝐵𝑖𝑦𝑛+1 + ∑ 𝐴𝑛+1,𝑖𝑦𝑖

𝑛+1

𝑖=1

− 𝑊𝑛+1 (∑ 𝐵𝑛+1,𝑖𝑦𝑖

𝑛+1

𝑖=1

+ 𝑟(𝑦𝑛+1)) = 0 (3.41) 

Eq. (3.41) sets the combination of the residual of the boundary condition and of the differential 

equation to zero at the boundary. It also insures the method is conservative as discussed in 

Sec. 3.1.4. The following matrix operators are defined as before: 

 
𝐴𝑗𝑖 =

𝑑ℓ𝑖(𝑥
2)

𝑑𝑥
|
𝑥𝑗

  and    𝐵𝑗𝑖 =
1

𝑥𝛾

𝑑

𝑑𝑥
[𝑥𝛾

𝑑ℓ𝑖(𝑥
2)

𝑑𝑥
]
𝑥𝑗
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Eq. (3.42) is not symmetric even for the self adjoint operator in Eq. (3.36). However, as shown 

in Sections 3.1.2 and 3.1.3 a minor restructuring of the equations into its weak form produces a 

symmetric matrix problem: 

 

𝛿𝑗,𝑛+1𝐵𝑖𝑦𝑛+1 + ∑ 𝐶𝑗𝑖𝑦𝑖

𝑛+1

𝑖=1

− 𝑊𝑗𝑟(𝑦𝑗) = 0 (3.42) 

where:  

 

𝐶𝑗𝑖 = 𝛿𝑗,𝑛+1𝐴𝑛+1,𝑖 − 𝑊𝑗𝐵𝑗𝑖 = ∑ 𝑊𝑘𝐴𝑘𝑗𝐴𝑘𝑖

𝑛+1

𝑖=1

 (3.43) 

When the stiffness matrix, C, is calculated with the left equality in Eq. (3.43) it is clear that Eq. 

(3.42) is equal to Eq. (3.40) after each row is multiplied by the quadrature weight, Wj. The 

equality on the far right of Eq. (3.43) follows from integrating the Laplacian, B, by parts as is 

done to convert a Galerkin method to weak form, e.g. Eq. (3.24). Since the integrand is a 

polynomial of degree 2n  – 1 in x2, the equality is valid for both Gauss and Lobatto quadrature, 

but not for the Clenshaw-Curtis quadrature used for Chebyshev points. For Chebyshev points, 

C must be calculated using the left equality. The resulting stiffness matrix is not symmetric for 
n > 2. 

 

Since orthogonal collocation is known to produce good results when it closely approximates 

the Moments or Galerkin methods, we compare it to these methods for this symmetric 

problem. For the Moments method, weighting the residual by the Lagrange interpolating 

polynomials through only the interior points (like Eq. (3.17)) is equivalent to weighting by 

monomials in x2. For the Galerkin method, the weight functions are the same as the trial 

functions in Eq. (3.38). The trial functions and the weight functions are both degree n for the 

Galerkin method, while the weight functions are degree n - 1 for the Moments method.  The 

integrands for the second order term are degree 2n  – 1 and 2n  – 2 for Galerkin and Moments 

methods respectively. Lobatto and Gaussian quadrature are exact for degree 2n  and 2n  – 1, 

respectively, so the second order term is always integrated exactly with those methods. For a 

simple first order source term, k = 1 in Eq. (3.2) or if the source term is interpolated like Eq. 

(3.34), the integrands for the source terms are degree 2n  and 2n  – 1 for Galerkin and 

Moments methods, respectively. Lobatto quadrature is exact for the Galerkin method and 

Gaussian quadrature is exact for the Moments method. 

 

A nonlinear reaction term could be approximated with a greater number of quadrature base 

points, and this may lead to some improvement in the solution. The results from the variable 

coefficient problem, see Fig. 3.18, suggest this would not be worth the extra effort. 

 

The results for the symmetric problem are similar to those found for nonsymmetric problems, 

Secs. 3.1.2 and 3.1.3, i.e. Gauss points yield a good approximation to the Moments method, 

while Lobatto points accurately approximate the Galerkin method. However, for nonsymmetric 

problems we found that in each case the corresponding quadrature formula to be one degree 
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shy of the accuracy needed for exact integration of the source terms, even for a linear 

problem, so this result for symmetric problems is slightly better. This analysis provides further 

explanation for the exact correspondence between Moments, Galerkin and collocation 

methods for the problem whose results are shown in Fig. 3.12 with an even number of points. 

 

In order to achieve the accuracy stated above for Gaussian and Lobatto quadrature, the 

geometric parameter, γ, must be taken into account. Chapter 2 explains how the Jacobi 

polynomial roots and quadrature weights are determined and some examples are shown in 

Chapters 1 and 2. The collocation points are shifted closer to the boundary for cylindrical and 

spherical geometry (see Figs. 1.2, 2.6 and 2.7). 

 

The justification for the use of Chebyshev points relies more on approximation theory than on 

accurate approximations of integrated MWR. It appears that the Chebyshev points are not 

normally altered to better suit the geometry (Trefethan (2000), p. 115; Boyd (2000), p. 380). 

For our purposes, we simply use the right half of the points used for a nonsymmetric problem. 

Chapter 2 describes the calculation for the interpolatory quadrature weights for cylindrical and 

spherical coordinates. The second derivative matrix operator, B, is calculated the same way as 

for other points (see Chapter 2) and the stiffness matrix, C, is calculated using the left 

expression in Eq. (3.43).  

 

The source term used for the examples which follow is of the form: 

 

𝑟̂(𝑦) =
(1 − 𝑦)𝑘

(1 − 𝐾𝑎𝑦)2
 (3.44) 

where we note r̂(0) = 1. When the denominator term, Ka = 0, the equation is identical to Eq. 

(3.2). When Ka > 0 and k = 1, the source function exhibits some interesting nonlinear behavior. 

It is said to be autocatalytic, i.e. the rate can increase with an increase in y. 

 

kth Order Source, Dirichlet B.C., Various Geometry: Here we consider Eq. (3.36) with 

source term Eq. (3.44) with Ka = 0. The normalized flux or effectiveness factor, η, defined in 

Eqs. (3.4) and (3.5) is again the quantity of primary interest from the solution. As described at 

the beginning of Section 3.1, η is unity for small φ and asymptotic for large φ. This behavior is 

qualitatively the same for all source functions and geometries. The asymptotic behavior 

corresponds to the condition where the reaction occurs in a layer near the external boundary 

and all reactants are consumed before reaching the center.  Under these conditions there is an 

asymptotic solution for Dirichlet boundary conditions, Bi → ∞ , which gives η in terms of a 

simple integral of the source function (Rawlings and Ekerdt, 2015). 

  

It can also be shown that for different geometries, the scaling of φ and Bi by the geometric 

factor, (γ + 1), produces results that correspond at the extremes of φ. This scaling factor is 

equivalent to using a characteristic length equal to the ratio of the particle volume to its surface 

area.   
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For the Dirichlet boundary conditions all source functions and geometries have the same 

asymptotic behavior when correlated using the generalized parameter,  φ*, defined by: 

 

𝜑∗ =  
𝜑

𝛾 + 1
[2∫ 𝑟(𝑦̂)𝑑𝑦

1

0

]

−1
  2

= 𝜑
√2(𝑘 + 1)

2(𝛾 + 1)
 (3.45) 

where k is the order or exponent 

of the source function in Eq. 

(3.44) (Ka = 0). Fig. 3.19 shows 

the normalized flux for a first 

order source, k = 1, planar and 

spherical geometry, together with 

numerical solutions for n = 2. 

The results for planar geometry 

with φ* = 5 in Fig. 3.19 

correspond to those displayed in 

Figs. 3.1 through 3.3. This 

symmetric treatment with n = 2 

corresponds to the nonsymmetric 

treatment with n = 4 in Fig. 3.1. 

This value of φ* corresponds to 

the point where the numerical results with n = 2 begin to depart from the exact solution.  For 

smaller values of φ* the results agree reasonably well with the analytical solutions.  For 

spherical geometry, φ = 3φ*, so the problem is correspondingly more difficult and the 

departures of the numerical results from the analytical solutions occur at lower values of φ*. 

 

Based on the results in Fig. 3.19 one would conclude that Chebyshev points are better, which 

seems to conflict with the results in Fig. 3.3. Closer examination reveals the apparent 

difference is due to the scale of the graphs. For reference, the maximum difference between 

the analytical results for planar and spherical geometry is about 15%. The numerical errors for 

planar geometry at φ* = 5 are not distinguishable from the exact curve in Fig. 3.19. As 

discussed in Section 3.1.1, for φ* = 5 the errors are 0.8, -3.1, and -4.3 percent for Lobatto, 

Chebyshev and Gauss points, respectively.  For smaller n , the Chebyshev results in Fig. 3.3 

are the most accurate, but the flux errors are greater than 1 percent and there are significant 

errors in the profiles. However, for a relatively loose error tolerance Chebyshev points are 

characteristically more accurate for these problems, in addition to Fig. 3.3 see Figs. 3.12 and 

3.18. 

 

Now consider a second order source, k = 2, still with Ka = 0. Fig. 3.20 shows calculated profiles 

for n = 4 for spherical geometry. The errors near the center of the sphere are significant for 

Gauss and Lobatto points. This result is likely because the Galerkin and Moments methods 
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shift the points away from the center where the volume is small. Chebyshev points are not 

based on integrated MWR, so the point locations remain the same, regardless of the 

geometry. Although there are some excursions between the nodes, the errors at the 

collocation points are characteristically small. As stated above, some finite element methods 

exhibit a phenomenon called superconvergence, where the accuracy at some nodes is greater 

than that of the solution in general. I am not aware of any studies of this phenomenon for 

global orthogonal collocation or pseudospectral methods, but they seem to exhibit this 

behavior. 

 

Despite the errors in the profiles in Fig. 3.20, the Chebyshev points give a flux error of 1.7 

percent which is virtually the same as the error with Gauss points and twice the error given by 

Lobatto points. Fig. 3.21 shows the flux error as a function of n for this problem and the 

corresponding one with planar geometry. The relative performance of the methods is similar to 

that shown in Figs. 3.3, 3.12 and 3.18. The results suggest that for comparable accuracy 

spherical problems require about 1.6 to 1.7 times as many points as planar geometry when 

compared for a given accuracy and value of φ*. For this nonlinear problem, the errors for a 

given number of points is not substantially worse than for the linear first order source function. 

For example with planar geometry, φ* = 5 and n = 2, Lobatto, Chebyshev and Gauss points 

give respectively, flux errors of 0.8, -3.1 and -4.3 percent for k = 1 and 3.0, -3.1 and -6.0 

percent for k = 2. However, the convergence rate is somewhat slower, so the disparity grows 

with n . 

 

Fig. 3.22 shows the normalized flux as a function of φ* for the second order source for planar 

and spherical geometry, along with numerical results for n = 3. In this case, the “exact” 

solution was computed with n = 20. Comparing with Fig. 3.19, the maximum difference 

between the curves for first and second order source functions is only about five percent. The 

numerical errors also appear to be qualitatively similar. The numerical methods track the exact 

solution up to the start of the asymptotic solution. In a full scale chemical reactor simulation, 
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one must solve this problem 

repeatedly at various locations 

and times in the larger system. 

Using OC with small n in 

combination with the asymptotic 

solution is an economical 

method for treating the full 

system [e.g. Finlayson and 

Young (1979)]. 

 

Autocatalytic Source, Third 

Kind B.C.: For this example 

values of Bi = 3, 10 and 100 are 

used for comparison.  With the 

largest value of Bi the conditions approach a Dirichlet boundary condition. For a linear source, 

boundary collocation gave poor results compared to use of a natural treatment, Eq. (3.41), see 

Fig. 3.12. Since the geometry causes no fundamental differences in solution procedure, planar 

geometry is used.  The source function is Eq. (3.44) with k = 1 and Ka = 0.95. This creates a 

rate which is essentially negative one order for small y and is called autocatalytic. This type of 

expression is not uncommon and occurs for the oxidation of carbon monoxide to carbon 

dioxide in millions of automotive catalytic converters. 

 

The nonlinear equations are solved with a Newton-Raphson method, Eq. (3.12). Using a 

quadratic profile for an initial guess works reasonably well. However, when two solutions exist 

convergence problems can occur if the initial estimate is poor. During the calculations, the 

value of y can exceed the physical limit of 1. In this case it is generally better to use a linear 

extrapolation of the rate for y > 1 rather than setting r = 0. 

 

An autocatalytic rate expression can lead to multiple steady state solutions.  This is easily 

illustrated by considering the approximation with a single term, n = 1.  The governing 

equations are Eqs. (3.40) and (3.41) or equivalently Eq. (3.42), where for all methods the 

stiffness matrix is of the form: 

 
𝐶 =  [

𝑐0 −𝑐0

−𝑐0 𝑐0
] (3.46) 

The values of c0 are listed in Table 3.4 along with the quadrature weights. Eq. (3.42) for n = 1 

is: 

 𝑐0(𝑦1 − 𝑦2)  − 𝑊1𝜑
2𝑟̂(𝑦1) = 0 

𝐵𝑖 𝑦2 + 𝑐0(𝑦2 − 𝑦1) − 𝑊2 𝜑
2𝑟̂(𝑦2) 

(3.47) 

r̂(y2) could be approximated by a Maclaurin series, but given the magnitude of Bi = 100, there 

is little error by using  r̂(y2) = 1. After using the second equation to eliminate y2, the remaining 

equation is of the form:  
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Table 3.4 Autocatalytic Reaction Parameters for n = 1 

 
c0 W1 W2 a b φmin φmax 

Error 
φmin 

Error 
φmax 

Gauss 3.0000 1.0000 0.0000 3.9126 0.0000 0.723 0.901 1.8% 13.6% 

Chebyshev 3.3704 0.8889 0.1111 3.6049 0.0029 0.683 0.852 -3.8% 6.4% 

Lobatto 3.0833 0.8333 0.1667 3.4490 0.0041 0.663 0.825 -6.7% 3.2% 

 

 𝑎
𝑦1

𝜑2
− 𝑏 = 𝑟̂(𝑦1) (3.48) 

Table 3.4 gives the parameters for the different approximations, while Fig. 3.23 is a graph of 

Eq. (3.48). The graph illustrates that three solutions occur for a range of φ. The intermediate 

solution is unstable, while the other 

two are stable. The predicted range of 

occurrence is calculated from the 

limiting slopes in Fig. 3.23.  We will 

find that with an accurate 

approximation, multiple solutions occur 

for 0.71 < φ < 0.80, so the equation 

with n = 1 are only approximate.  

However, considering the simplicity of 

the approximation for this highly 

nonlinear problem, the results are 

good. Also, the graphical solution 

shown in Fig. 3.23 is helpful for 

understanding the multiple solution 

phenomenon. 

 

For φ = 0.75, Figs. 3.24 and 3.25 show calculated conversion profiles for several 

approximations together with an accurate profile (n  = 12).  As predicted by the simple n = 1 

approximation, there are two stable profiles at this condition.  The lower one is accurately 
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approximated with n = 1 or 2, whereas the higher profile requires more terms to achieve an 

accurate solution.  Even though the profile appears to be relatively smooth, keep in mind that 

the second derivative must follow the 

rate expression plotted in Fig. 3.23. The 

nonlinearity of the rate function makes 

the problem more difficult for larger 

conversion, y > 0.8.  The low order 

approximations predict nonphysical 

conversion values greater than unity.   

 

Fig. 3.26 shows the residual, Eq. (3.39), 

of the upper solution for several 

approximations.  Since for these 

conditions the greatest nonlinearity 

occurs for y > 0.8 or x < 0.4, the residual 

becomes very large and negative near 

the center. These errors contribute to the errors observed in Figs. 3.24 and 3.25.   

 

The normalized boundary flux, η, is shown for a range of φ in Figs. 3.27 and 3.28.  The “exact” 

solution, calculated with n = 12, is accurate to the scale of the graph. It shows the two 

solutions for 0.71 < φ < 0.80. The lower solution shows convergence to within 0.05% for n = 2, 

in agreement with Fig. 3.24. However, considerably more points are required to approximate 

the upper solution and large φ. For n = 3, Chebyshev and Gauss points predict false multiple 

solutions at large φ. The maximum percentage error for the upper solution, φ < 1.4, with 

Gauss, Chebyshev and Lobatto points, respectively, is 7.6, 6.3 and 4.8 for n = 4, and 3.3, 2.6 

and 2.2 for n = 6.  

 

The flux for this problem can also be correlated with a generalized Thiele parameter like Eq. 

(3.45), where for this source function and k = 1: 
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𝜑∗ =  
𝜑

𝛾 + 1
[2∫ 𝑟(𝑦̂)𝑑𝑦

1

0

]

−1
  2

=
𝜑

𝛾 + 1

𝐾𝑎

√−2[𝐾𝑎 + ln (1 − 𝐾𝑎)
  

 

For planar geometry and Ka = 0.95, φ* = 0.4697φ, so that asymptotically η = 1/φ* for infinite Bi. 

The asymptotic values plotted in Fig. 3.27 for comparison track the upper solution for Bi = 100. 

 

Figs. 3.29 and 3.30 show errors in the normalized flux or effectiveness factor as a function of n 

for φ = 0.75 and values of Bi of 3 and 100. There are no major differences in accuracy with the 

different points, at least for the upper solution when a natural boundary condition treatment is 

used. Lobatto points produce slightly better results, but the geometric average of the error 

ratios for n < 40 is no more than about 2 for the three values of Bi considered. This result is 

different from the other problems with a linear or second order source where we found a 

slower convergence rate with Chebyshev points. Compared to the other problems, the number 

of points required to achieve high accuracy is much greater, especially when you consider that 

this symmetric treatment is equivalent to using twice as many points in a nonsymmetric 

treatment. However, even for this highly nonlinear problem, engineering accuracy is achieved 

with only 5 to 10 points.  

 

For the easier lower solution, Chebyshev points give a slower convergence rate than the other 

two choices, which is the same behavior as for the other problems tested. However, the results 

for all three are similar for errors greater than 10-6, so for engineering accuracy, all the 

methods give similar results.  

 

For comparison, both boundary collocation (labeled coll) and a natural treatment, Eq. (3.41), 

are included. The results in Fig. 3.12 show that a natural boundary condition treatment is 

significantly better for that problem even for small n , relatively loose error tolerance, and Bi = 2 

to 50. However, for this problem Figs. 3.29 and 3.30 show that the differences are not as 

dramatic. The accuracy with both approaches is similar for errors larger than 10-4, 10-6 and 10-8 
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for Bi of 3, 10 and 100, respectively. For the linear problem and Bi = 5, the value yn+1 = 0.5000 

indicates that about half the transfer resistance occurs at the boundary. For this problem and Bi 

= 3 the value yn+1 = 0.4578 is similar. The difference in convergence behavior is evidently due 

to the extreme nonlinearity.  

 

To examine the boundary condition 

treatment, observe that the first two 

terms in Eq. (3.41) give the residual of 

the boundary condition, while the third 

term is the product of the quadrature 

weight, Wn+1, and the interior residual, 

Eq. (3.39), evaluated at the boundary, 

i.e. R at x = 1. For Gauss points, the 

equation reduces to boundary 

collocation because Wn+1 = 0, while the 

boundary weight is O(1/(2n 2)) for 

Lobatto points and O(1/(4n 2)) 

Chebyshev points. The natural boundary 

condition treatment drives both residuals 

to zero as the approximation is refined. 

Figs. 3.31 and 3.32 show the behavior of 

these residuals for increasing n . Fig. 3.31 

plots the boundary condition residual for 

two values of Bi, while Fig. 3.32 shows 

both the boundary condition residual and 

R(1)  for Bi = 3. Both of these residuals go 

to zero at an exponential rate, but the 

convergence is somewhat erratic with 

periodic dips and frequent sign changes. 

This erratic behavior is evident in Fig. 

3.26, but is difficult to see due to the 

number of curves. The ratio of the 

corresponding residuals in Fig. 3.32 is the quadrature weight, Wn+1. The exponential 

convergence rate of the residuals overwhelms the O(1/n 2) change in the quadrature weight. 

  

Apparently, for this problem with large Bi and smaller values of n , the errors due to the 

boundary condition treatment are less important than other errors in the approximation, e.g. 

the residuals in Fig. 3.26 which are largest near the center. For engineering accuracy, the 

boundary condition treatment makes little difference. This is quite different from the behavior of 

other problems tested. Even for small n and loose error tolerance, other problems exhibit 

orders of magnitude improvement using the natural boundary condition approximation. When 

you consider the natural treatment is easy to apply, it must be the preferred method. 
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It may seem that we are belaboring the point regarding the treatment of flux boundary 

conditions. Texts have continued to recommend boundary collocation [Trefethen (2000), p. 

137; Boyd (2000), p. 111, Peyret (2002), p. 59], when it was shown to give poor results many 

years ago [see Table 5.7 and Fig. 5.7 in Finlayson (1972)].  Again, this issue does not apply to 

Gauss points because Wn+1 = 0. Although many claim benefits for a nonzero boundary 

quadrature weight, it is not an asset when boundary collocation is used. Apparently, the 

benefits of a natural boundary condition treatment in conjunction with the collocation method 

have not generally been known. In the OC literature Gauss points have become the preferred 

choice since it avoids this issue altogether.  

 

Although methods similar to the natural treatment of flux boundary conditions have been 

proposed in the PS literature [Canuto, et al. (1988), Funaro (1992), Shen and Tang (2006) ], it 

appears these alternatives have not caught on. Most PS applications continue to make the 

mistake of using boundary collocation with Chebyshev and Lobatto points. The problem is 

easily avoided by using a natural treatment of flux boundary conditions instead. Chapter 4 on 

parabolic problems further emphasizes the pitfalls of using boundary collocation. 

3.1.6 Orthogonal Polynomial Trial Functions 

The choice of trial functions is discussed in Section 1.2 and the justification for using Lagrange 

interpolating polynomials or nodal methods is given there. For problems of interest, 

interpolating polynomials rather than orthogonal polynomials are usually the best choice. For 

completeness, a couple of examples are considered here using orthogonal polynomial trial 

functions (modal methods) to give the reader a flavor of the differences between the two 

approaches.  

 

The problem of diffusion with a linear source and Dirichlet boundary conditions, Eqs. (3.1) with 

(3.1a) and (3.2), is considered with constant and variable coefficients. We do not consider 

Chebyshev polynomials here, but their use is well documented in the references (Shen and 

Tang (2006), Ch. 3 is highly recommended). For convenience, the domain [-1,1] is used. The 

factor of 4 used in the rate function is dropped to solve the same problem with this larger 

domain. 

 

We wish to use Legendre polynomials as trial functions, so the solution is approximated by Eq. 

(2.1) duplicated here: 

 

𝑦̃ = ∑ 𝑃𝑘(𝑥)

𝑛+1

𝑘=0

𝑎̂𝑘 (3.49) 

where n corresponds to the number of interior points in a nodal method. The method is called 

a modal method, because the unknown coefficients, 𝒂̂, are equivalent to the modes in a 

Fourier series 
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As discussed in Section 2.1, the even numbered polynomials are even functions of x, i.e. 

symmetric about x = 0, while the odd numbered ones are odd. If the problem is symmetric like 

those considered in Section 3.1.5, only even number polynomials would be used in the 

approximation, Eq. (3.49). The first few Legendre polynomials are given in Eq. (2.20) while the 

others can be built up using the three term recurrence relations discussed in Section 2.1. 

 

These polynomials are orthogonal on the interval [-1,1] with a weight function of unity. They 

correspond to a Jacobi polynomial with α = β = 0. There are several ways one could treat the 

boundary conditions. 

 𝑦(±1) = 0  

One method is to add constraint equations to explicitly enforce them, while another method is 

to select combinations of the orthogonal polynomials which will meet the boundary conditions 

[Boyd (2000)].  Shen and Tang describe this later approach for a general boundary condition, 

including 1st, 2nd and 3rd type as special cases. That approach is used here for this simple 

problem. Legendre polynomials are normalized so the boundary values are: 

 
𝑃𝑘(1) = 1   and   𝑃𝑘(−1) = (−1)𝑘  

Since the polynomials are alternately odd and even about x = 0, the simplest method to meet 

the boundary conditions is to subtract P0 from the even numbered polynomials in Eq. (3.49)  

and subtract P1 from the odd numbered ones. A better matrix structure is achieved if Eq. (3.49) 

is modified to:  

 

𝑦̃ = ∑(𝑃𝑘+2(𝑥) − 𝑃𝑘(𝑥))

𝑛−1

𝑘=0

𝑎𝑘 = ∑ 𝜓𝑘(𝑥)

𝑛−1

𝑘=0

𝑎𝑘 (3.50) 

Villadsen and Michelsen (1978) considered this problem for a symmetric solution in cylindrical 

geometry. They expanded the solution in terms of Jacobi polynomials. A similar approach for 

this geometry would use Jacobi polynomials with α = β = 1, and a multiplier of (1 – x2) enforces 

the boundary conditions. These trial functions are equivalent to those in Eq. (3.50), since Eq. 

(2.39) is the identity:  

 
(1 − 𝑥2)𝑃𝑘

(1,1)(𝑥) = −
2𝑘 + 2

2𝑘 + 3
(𝑃𝑘+2(𝑥) − 𝑃𝑘(𝑥)) (3.51) 

Here we follow the same convention used in Chapter 2. A superscript is used to designate the 

α and β of a Jacobi polynomial, e.g. (1,1) designates α = β = 1, while no superscript indicates a 

Legendre polynomial, α = β = 0. The roots of the Jacobi (1,1) polynomials are the Lobatto 

quadrature base points.  

 

Given the trial functions, ʕ, the residual of Eq. (3.1) with first order source and constant 

coefficients is: 

 

𝑅(𝑥, 𝒂) = ∑[𝜓𝑘
′′(𝑥) − 𝜑2𝜓𝑘]𝑎𝑘

𝑛−1

𝑘=0

+ 𝜑2 (3.52) 
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Substituting the trial functions, Eq. (3.50), and then Eq. (2.42) for the second derivative, the 

residual is: 

 
𝑅(𝑥, 𝒂) = ∑[𝑃𝑘+2

′′ − 𝑃𝑘
′′ − 𝜑2(𝑃𝑘+2 − 𝑃𝑘)]𝑎𝑘

𝑛−1

𝑘=0

+ 𝜑2 

= ∑ [∑𝑆𝑘ℓ𝑃ℓ

𝑘

ℓ=0

− 𝜑2(𝑃𝑘+2 − 𝑃𝑘)] 𝑎𝑘

𝑛−1

𝑘=0

+ 𝜑2 

(3.53) 

where S is constructed from Eq. (2.42).  

 

With collocation the residual, Eq. (3.53), is set to zero at n  interior collocation points. The 

resulting problem is a full n  x n  matrix problem. Solution of the matrix problem produces 

coefficients, 𝑎𝑘, which give exactly the same nodal values as the nodal solutions in Section 

3.1.1. The effort required to solve the problem is similar to that of a nodal formulation. It turns 

out though, that if an integrated MWR is applied simplifications sometimes occur.  

Moments Method  

Section 1.1 briefly described the Moments method and Section 3.1.1 developed a nodal 

formulation for the problem considered here. Now we wish to use the trial functions in Eq. 

(3.50) rather than interpolating polynomials.  The weight functions with the Moments method 

are nominally the monomial powers of x. However, as explained in Section 1.1, any linearly 

independent set of polynomials which contains the monomials is equivalent. The natural 

choice of weight functions are the Legendre polynomials: 

 ∫ {∑[𝜓𝑘
′′(𝑥) − 𝜑2𝜓𝑘]𝑎𝑘

𝑛−1

𝑘=0

+ 𝜑2} 𝑃ℓ(𝑥)𝑑𝑥
1

−1

= 0 (3.54) 

ℓ = 0,…,n  - 1. The Moments method is equivalent to the Tau method [Lanczos (1956)]. The 

only difference is that here the trial functions have been constructed to meet the boundary 

conditions, while with the Tau method side conditions are used to enforce the boundary 

conditions. The end result is the same, but the Moments method produces a better matrix 

structure. 

 

Eq. (3.55) may be written in matrix notation as: 

 [𝑪 − 𝜑2𝑫]𝒂 = −𝜑2𝒉 (3.55) 

We identify C and D as the stiffness and mass matrices, respectively, and h as the load vector. 

These quantities can be integrated easily using Eqs. (2.6) and (2.42). 

 

𝐶𝑖𝑗 = ∫ 𝑃𝑖(𝑥) 𝜓𝑗
′′(𝑥) 𝑑𝑥 = 2(2𝑗 + 3)  for 𝑗 ≥ 𝑖, 𝑖 + 𝑗 even

1

−1

 

𝐷𝑖𝑗 = ∫ 𝑃𝑖(𝑥) 𝜓𝑗(𝑥) 𝑑𝑥
1

−1

=
2

2𝑖 + 1
(𝛿𝑖.𝑗+2 − 𝛿𝑖𝑗) 

ℎ𝑖 = ∫ 𝑃𝑖(𝑥)𝑑𝑥
1

−1

= ∫ 𝑃𝑖(𝑥)𝑃0(𝑥)𝑑𝑥
1

−1

= 2𝛿0𝑖 
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The stiffness matrix, C, is upper triangular with alternate diagonals zero due to the alternating 

odd/even nature of the polynomials. The mass matrix, D, consists of a diagonal and one 

subdiagonal. The load vector, h, is integrated by substituting P0 = 1. Only the first row has a 

nonzero value. The matrices for n = 6 are: 

 

𝑫 = 

(

 
 
 

−2 0 0 0 0 0
0 −2/3 0 0 0 0

2/5 0 −2/5 0 0 0
0 2/7 0 −2/7 0 0
0 0 2/9 0 −2/9 0
0 0 0 2/11 0 −2/11)

 
 
 

  

 

𝑪 = 

(

  
 

6 0 14 0 22 0
0 10 0 18 0 26
0 0 14 0 22 0
0 0 0 18 0 26
0 0 0 0 22 0
0 0 0 0 0 26)

  
 

  

 

When combined the matrix is upper triangular except for the addition of the subdiagonal from 

the mass matrix. The matrix problem can be solved more efficiently than a full matrix, since 

only the subdiagonals need be eliminated. Some sample solutions with φ = 5, are: 

 𝑎 = {−0.808625, 0, −0.336927, 0}   for 𝑛 = 3 or 4 

𝑎 = {−0.800214, 0, −0.281414, 0,−0.056737}   for 𝑛 = 5 or 6 

𝑎 = {−0.800020, 0, −0.280131, 0,−0.050260, 0,−0.005711, 0}   for 𝑛 = 7 or 8 

 

When Eq. (3.50) is evaluated at the Gauss points with these coefficients, the values are 

identical to those found in Section 3.1.1 with an even number of Gauss points (which is 

equivalent to Moments). Since the solution is symmetric in x, the alternate coefficients, i.e. 

those of the odd polynomials, are zero. The solutions for the two sets of points indicated are 

identical except for an extra zero coefficient for the last odd function. The rapid decay of the 

coefficient values and the rapid convergence of the lower order coefficients, indicates the fast 

convergence of the solution with increasing n . This convergence behavior has important 

consequences for the accuracy of the boundary flux, Eq. (3.4).  

 

Integration of the approximate solution, Eq. (3.50), gives the normalized flux: 

 
𝜂 =

1

2
∫ (1 − 𝑦)𝑑𝑥 = 1

1

−1

−
1

2
 ∑ 𝑎𝑘 ∫ (𝑃𝑘+2(𝑥) − 𝑃𝑘(𝑥))𝑑𝑥

1

−1

𝑛−1

𝑘=0

= 1 + 𝑎0 (3.56) 

The analytical solution, Eq. (3.6), gives the exact value 𝑎0 = -0.800018. Normally, the 

derivatives of an approximate solution converges slower than the solution itself. However, the 

boundary flux is a special case, since integration can be used as explained in the discussion of 

Eq. (3.5). When solved with the Moments method the boundary flux converges more quickly 

than the overall solution. This behavior is clearly demonstrated by comparison of the L2 error 

norms and flux errors in the examples above. 

Galerkin Method 
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Now consider the solution of this problem with the trial functions, Eq. (3.50), giving the same 

residual, Eq. (3.52). However, with weighting by the trial functions, the weighted residual is 

modified to: 

 ∫ {∑[𝜓𝑘
′′(𝑥) − 𝜑2𝜓𝑘]𝑎𝑘

𝑛−1

𝑘=0

+ 𝜑2}𝜓ℓ(𝑥)𝑑𝑥
1

−1

= 0 (3.57) 

By comparing Eqs. (3.54) and (3.57), a simple relationship between the Galerkin and Moments 

approximations is apparent. Both the mass matrix and stiffness matrix are related as follows: 

 𝐶𝑖𝑗
𝐺 = 𝐶𝑖+2,𝑗

𝑀 − 𝐶𝑖𝑗
𝑀 (3.58) 

where the superscripts, G and M, indicate the matrices for the Galerkin and Moments methods, 

respectively. The resulting matrices are: 

 

𝑫𝑮 =  

(

 
 
 

2.4 0 −2/5 0 0 0
0 0.9524 0 −2/7 0 0

−2/5 0 0.6222 0 −2/9 0
0 −2/7 0 0.4675 0 −2/11
0 0 −2/9 0 0.3761 0
0 0 0 −2/11 0 0.3152)

 
 
 

  

 

𝑪𝑮 = 

(

  
 

6 0 0 0 0 0
0 10 0 0 0 0
0 0 14 0 0 0
0 0 0 18 0 0
0 0 0 0 22 0
0 0 0 0 0 26)

  
 

  

Compared to the Moments method, these modifications produce a matrix problem which can 

be solved more efficiently, especially for large n . The stiffness matrix is diagonal, while the 

mass matrix is pentadiagonal. If the symmetric nature of the problem were exploited by 

eliminating the odd polynomials from the expansion the mass matrix would be tridiagonal.  

 

One nice feature of the modal formulation is that it is much easier to calculate the solution for 

different n in order to monitor the convergence. The matrices can be calculated for the 

maximum n of interest, which gives the matrices for smaller n  as just the upper left portion of 

the larger matrix.  For example, the solution for n = 3 can be obtained by using the upper left 

3x3 submatrix of the larger matrix. For a nodal formulation, the matrix problem is different for 

each n , so monitoring convergence requires the calculation of a new matrix for each n of 

interest.  

 

Some example solutions for φ = 5, are:  

 𝑎 = {−0.798511, 0, −0.270173, 0}   for 𝑛 = 3 or 4 

𝑎 = {−0.799998, 0, −0.279987, 0,−0.049535, 0}   for 𝑛 = 5 or 6 

𝑎 = {−0.800018, 0, −0.280119, 0,−0.050201, 0,−0.005249, 0}   for 𝑛 = 7 or 8 

 

When Eq. (3.50) is evaluated at the Lobatto points with these coefficients, the values are 

identical to those found in Section 3.1.1 with an even number of Lobatto points (which is 

equivalent to a Galerkin method). 
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The convergence rate of these coefficients is somewhat better than that for the Moments 

method, so the comments above regarding the accuracy of flux calculations apply equally to 

the Galerkin method. 

Variable Coefficients 

The banded matrix structure given by the Galerkin method above and even the near upper 

triangular matrix produced by the Moments method can be solved more efficiently than the full 

matrix problems produced by the nodal approximations resulting from Lagrange interpolating 

polynomials. Unfortunately, these efficient matrix structures are lost if the problem is nonlinear 

or even if it has variable coefficients. To demonstrate this property, consider the problem with 

source function in Eq. (3.33), which is linear in y, but cubic in x. The cubic function q(x) varies 

from 0.2 to 1.8, but with an average value of unity (note the factor of 4 is dropped from the 

equation because the domain here is [-1,1]). To facilitate solution of the problem, the variable 

coefficient is expressed as a function of Legendre polynomials. One way to determine these 

coefficients is through a discrete Legendre transform as described in section 2.5. The result is: 

 𝑞(𝑥) = 𝑃0 + 0.96𝑃1 − 0.16𝑃3  

In this form it is clear from the properties of Legendre polynomials that the average value is 

unity and the values at the two boundaries are as stated above. 

 

Eq. (3.55) still applies for this problem and the stiffness matrices are the same as before, but 

the mass matrix and load vector change. For the Galerkin method, these quantities are: 

 

𝐷𝑖𝑗 = ∫ 𝜓𝑖(𝑥) 𝜓𝑗(𝑥) 𝑞(𝑥) 𝑑𝑥
1

−1

 

ℎ𝑖 = ∫ 𝜓𝑖(𝑥) 𝑞(𝑥) 𝑑𝑥
1

−1

 

 

The load vector can easily be integrated analytically when q is expressed in terms of the 

Legendre polynomials. Integration of the mass matrix analytically is more complicated. One 

possibility is to interpolate the product of q and ψ as a discrete Legendre series and then 

integrate. It is probably simpler just to use numerical quadrature to integrate the expressions 

as was done when this problem was solved by nodal methods. Table 3.1 details the degree of 

the mass matrix integrand. Exact integration for the Galerkin method is obtained using 

Gaussian quadrature with n + 3 points or Lobatto quadrature with n + 2 interior points. One 

less quadrature point is needed for Moments. 

 

Exact integration of the Galerkin mass matrix and load vector gives: 

 

 
𝐷𝐺 =

[
 
 
 
 
 

2.4000 0.6095 −0.4000 −0.2119 0 0.0139
0.6095 0.9524 0.2101 −0.2857 −0.1446 0

−0.4000 0.2101 0.6222 0.1432 −0.2222 −0.1131
−0.2119 −0.2857 0.1432 0.4675 0.1090 −0.1818

0 −0.1446 −0.2222  0.1090  0.3761  0.0884
0.0139 0 −0.1131 −0.1818  0.0884  0.3152]

 
 
 
 
 

  and   ℎ𝐺 =

[
 
 
 
 
 
−2.0000
−0.6857

0
  0.0457

0
0 ]

 
 
 
 
 

  

Except for a couple of zeros, this matrix is full, so the beneficial matrix structure found for the 

constant coefficient problem is lost. A full matrix also results when the source is nonlinear. 
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Solving a nonlinear problem is further complicated by the indirect dependence of the 

dependent variable, y, on the unknown coefficients, a . Nonlinear problems are much easier to 

solve with a nodal method. 

 

Some examples of solutions using the Moments method with φ = 5 are:  

 𝑎 = {−0.780464,−0.139001,−0.290515, −0.136558}   for 𝑛 = 4 

𝑎 = {−0.765444,−0.154772,−0.232674, −0.105690,−0.061149, −0.026173}  for 𝑛 = 6 
 

Some solutions with the Galerkin method are: 

 𝑎 = {−0.764431,−0.151352,−0.218663, −0.107983}   for 𝑛 = 4 

𝑎 = {−0.765254,−0.154036,−0.229734, −0.106528,−0.047540, −0.022546}  for 𝑛 = 6 
 

These solutions are identical to those found for the nodal Moments and Galerkin methods 

shown in Figs. 3.15 and 3.16 and Table 3.2 when converted to a common basis.  

 

Methods to convert between modal and nodal representations are discussed in Section 2.5. To 

demonstrate the conversion, consider the Galerkin solution of the variable coefficient problem 

with n  = 4. The values at the Lobatto points are illustrated in Fig. 3.16. These values can be 

compared by using the coefficients above to evaluate Eq. (3.50) at the Lobatto points. The 

result is: 

 𝑦 =  {0, 0.46603,  0.92731,  0.97087,  0.79069, 0 }  

which is identical to the results found using the nodal formulation.  

 

Suppose we had not solved the problem with the modal formulation but want to know the 

modal coefficients. In that case, a Legendre transformation matrix, discussed in Section 2.5, 

can be used to calculate the coefficients from the nodal values by 𝒂̂ = 𝑸𝒚. The result of the 

calculation is the coefficients of Eq. (3.49), which are: 
  𝑎̂  =  { 0.76443, 0.15135,−0.54577, −0.04337,−0.21866,−0.10798 }  

These can be determined from those above, by collecting like terms. The point of this 

discussion is that the solution is exactly the same, but there are different ways to represent it. 

Using one form of trial function or another does not change the solution, though some texts 

seem to suggest that it does. 

3.2 Chemical Reactor with Axial Dispersion 
For the next example of a boundary value problem, consider nonisothermal flow through a 

chemical reactor with axial conduction and dispersion.  This is a coupled heat and mass 

transfer problem. The governing equations for the problem are: 

 

1

𝑃𝑒𝑚

𝑑2𝑦

𝑑𝑧2
−

𝑑𝑦

𝑑𝑧
+ 𝑟𝑚(𝑦, 𝑇) = 0   and 

1

𝑃𝑒𝑡

𝑑2𝑇

𝑑𝑧2
−

𝑑𝑇

𝑑𝑧
− 𝑈𝑇 + 𝑟𝑡(𝑦, 𝑇) = 0 

(3.59) 

with: 

 
𝑑𝑦

𝑑𝑧
= 𝑃𝑒𝑚𝑦    and   

𝑑𝑇

𝑑𝑧
= (𝑃𝑒𝑡 + 𝑈)𝑇   at 𝑧 = 0 and  
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𝑑𝑦

𝑑𝑧
= 0   and  

𝑑𝑇

𝑑𝑧
+ 𝑈𝑇 = 0   𝑎𝑡 𝑧 = 1 

The model allows for cooling or heating at the wall using a lumped parameter approximation 

with an overall heat transfer coefficient, parameter U.  These problems are convection 

dominated, since the Peclet numbers, Pem and Pet, are normally large. The solution is 

nonsymmetric and all the boundary conditions are of the second or third kind.  Models with 

heating and cooling often fail to account for this effect in the boundary conditions. The 

boundary conditions were correctly treated by Young and Finlayson (1973), and those shown 

above are an accurate approximation of the correct ones. 

  

In an industrial reactor model several component balances could be required to represent a 

system of reactions, so Eq. (3.59) is formulated as the following system of coupled equations: 

 
1

𝑃𝑒𝑘

𝑑2𝑦𝑘

𝑑𝑧2
−

𝑑𝑦𝑘

𝑑𝑧
− 𝑈𝑘𝑦𝑘 + 𝑟𝑘(𝒚) = 0    (3.60) 

with 

 
𝑑𝑦𝑘

𝑑𝑧
= (𝑃𝑒𝑘 + 𝑈𝑘)𝑦𝑘    at 𝑧 = 0   and  

𝑑𝑦𝑘

𝑑𝑧
+ 𝑈𝑘𝑦𝑘 = 0   𝑎𝑡 𝑧 = 1  

for k = 0,…,n m. We assign k = 0 to the energy balance which is combined with as many mass 

balances as required to represent the reaction system of interest. 

  

After the application of conventional orthogonal collocation, Eq. (3.60) is approximated by: 

 
∑ (

1

𝑃𝑒𝑘
𝐵𝑗𝑖 − 𝐴𝑗𝑖 − 𝑈𝑘𝛿𝑗𝑖)

𝑛+1

𝑖=0

𝑦𝑖𝑘 + 𝑟𝑘(𝒚𝑗) = 0 (3.61) 

for j = 1,…,n , and using boundary collocation as recommended by most authors: 

 
∑[𝐴0,𝑖 − (𝑃𝑒𝑘 + 𝑈𝑘)𝛿𝑜,𝑖]

𝑛+1

𝑖=0

𝑦𝑖𝑘 = 0   and  

∑[𝐴𝑛+1,𝑖 + 𝑈𝑘𝛿𝑛+1,𝑖]

𝑛+1

𝑖=0

𝑦𝑖𝑘 = 0 

(3.61a) 

where 𝑦𝑖𝑘 = [𝑇(𝑧𝑖), 𝑦1(𝑧𝑖),… , 𝑦𝑛𝑚
(𝑧𝑖)] and yj is the vector of all values evaluated at point zj. 

Based on the results for the previous example, we anticipate that boundary collocation, Eq. 

(3.61a), will work well for Gauss points but not so well for Lobatto or Chebyshev points.  

 

A natural treatment of the boundary conditions works better for Lobatto and Chebyshev points. 

It is the standard method for treating flux boundary conditions with Galerkin methods and it 

falls out when the equations are cast in weak form. The weak form of the Galerkin method is 

derived by integrating the Laplacian by parts and substituting the boundary conditions for the 

boundary derivatives. This exercise was carried out for the previous problem in Eqs. (3.23) and 

(3.24). Then quadrature is used to approximate the integrals as in Eq. (3.25). With a slight 
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generalization in the definition of the stiffness matrix, C in Eq. (3.26), the same formulation can 

be applied for any type of points. For this problem the resulting weak form is: 

 
𝛿0,𝑗 (1 +

𝑈𝑘

𝑃𝑒𝑘
) 𝑦0,𝑘 + 𝛿𝑛+1,𝑗

𝑈𝑘

𝑃𝑒𝑘
𝑦𝑛+1,𝑘 + ∑ (

1

𝑃𝑒𝑘
𝐶𝑗𝑖 + 𝑊𝑗𝐴𝑗𝑖 + 𝑈𝑘𝑊𝑗𝛿𝑗𝑖)

𝑛+1

𝑖=0

𝑦𝑖𝑘 − 𝑊𝑗𝑟𝑘(𝒚𝑗) = 0 (3.62) 

From the previous discussions, we know the weak form, Eq. (3.62), is equivalent to the 

conventional form, Eq. (3.61), at the interior points, but the boundary conditions are treated 

differently. In order to compare the two methods for treating the boundary conditions, Eq. 

(2.60) or (3.26) is substituted for C, which gives the boundary equations:  

 
∑ [(1 +

𝑈𝑘

𝑃𝑒𝑘
) 𝛿0,𝑖 −

𝐴0,𝑖

𝑃𝑒𝑘
]

𝑛+1

𝑖=0

𝑦𝑖𝑘 − 𝑊0 [∑ (
𝐵𝑜,𝑖

𝑃𝑒𝑘
− 𝐴0,𝑖 − 𝑈𝑘𝛿0,𝑖)

𝑛+1

𝑖=0

𝑦𝑖𝑘 + 𝑟𝑘(𝒚0)] = 0 

∑ [
𝑈𝑘

𝑃𝑒𝑘
𝛿𝑛+1,𝑖 +

𝐴𝑛+1,𝑖

𝑃𝑒𝑘
]

𝑛+1

𝑖=0

𝑦𝑖𝑘 − 𝑊𝑛+1 [∑ (
𝐵𝑛+1,𝑖

𝑃𝑒𝑘
− 𝐴𝑛+1,𝑖 − 𝑈𝑘𝛿𝑛+1,𝑖)

𝑛+1

𝑖=0

𝑦𝑖𝑘 + 𝑟𝑘(𝒚𝑛+1)] = 0 

(3.63) 

The first term is the boundary condition residual and the second is the interior residual 

evaluated at the boundary and multiplied by the quadrature weight. This relationship is like that 

found for the previous example, see Eq. (3.27). Rather than setting one or the other residual to 

zero, this procedure sets a combination of the two to zero. Although neither residual will be 

identically zero, they will converge to zero. For Gauss points, the boundary quadrature weights 

are zero, so Eq. (3.61a) and (3.63) are equivalent. 

 
When Gauss points are used, the method is an accurate approximation to the Moments 

method and when Lobatto points are used, it is an accurate approximation to the Galerkin 

method. In each case the dispersion and convection terms are integrated exactly. If the rate 

terms are interpolated, like Eq. (3.34), integration of both the rate term and heat transfer term 

miss exact integration by one degree. The reaction term is nonlinear, so the accuracy of the 

approximation depends on the severity of the nonlinearity. 

 

Eq. (3.62) can be expressed in the form:  

 
∑ 𝐴̃𝑗𝑖

𝑘

𝑛+1

𝑖=0

𝑦𝑖𝑘 − 𝑊𝑗𝑟𝑘(𝒚𝑗) = 0 (3.64) 

where: 

 
𝐴̃𝑗𝑖

𝑘 =
1

𝑃𝑒𝑘
𝐶𝑗𝑖 + 𝑊𝑗𝐴𝑗𝑖 + 𝛿𝑗𝑖 [𝑈𝑘𝑊𝑗+𝛿0,𝑗 (1 +

𝑈𝑘

𝑃𝑒𝑘
) + 𝛿𝑛+1,𝑗

𝑈𝑘

𝑃𝑒𝑘
]  

Eq. (3.61) can be expressed in the same form. The form of Eq. (3.64) is similar to that of Eq. 

(3.10), so a Newton-Raphson iteration like Eq. (3.12) may be used to solve it. The only 

difference is that here we have a coupled set of equations rather than a single equation. 

 

The two differential equations are coupled only through the rate terms. The rate terms can be 

linearized about some initial or intermediate estimates ys to give the approximation 

 

𝑟𝑘 ≈ 𝑟𝑘(𝒚
𝑠) + ∑

𝜕𝑟𝑘
𝜕𝑦ℓ

|
𝒚𝑠

𝑛𝑚

ℓ=0

∆𝑦ℓ (3.65) 
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where y is the vector which includes T as its first member. This linearization is substituted into 

Eq. (3.64) and a Newton-Raphson iteration, like Eq. (3.12), can be used to solve the system of 

equations.  

 

The iterations are then: 

 
∑ (𝐴̃𝑗𝑖

𝑘 − 𝛿𝑗𝑖𝑊𝑗

𝜕𝑟𝑘

𝜕𝑦
𝑘

|
𝒚𝑗

𝑠

)

𝑛+1

𝑖=0

𝑦𝑖𝑘
𝑠+1 − 𝑊𝑗  ∑

𝜕𝑟𝑘

𝜕𝑦
ℓ

|
𝒚𝑗

𝑠

𝑛𝑚

ℓ=0
ℓ≠𝑘

𝑦
𝑗ℓ
𝑠+1 = 𝑊𝑗𝑟𝑘(𝒚𝑗

𝑠) − 𝑊𝑗  ∑
𝜕𝑟𝑘

𝜕𝑦
ℓ

|
𝒚𝑗

𝑠

𝑛𝑚

ℓ=0

𝑦
𝑗ℓ
𝑠  (3.66) 

It is perhaps better to formulate the equations to solve for changes, ɝy, like Eq. (3.12), rather 

than directly for the updated values. 

 

Although the problem is formulated for any number of mass balance equations, we consider 

only one mass balance together with the energy balance.  A first order exothermic reaction is 

used: 

 
𝑟𝑘 = 𝐷𝑎𝑘(1 − 𝑦)exp (

20𝑇

𝑇 + 1
) (3.67) 

Da are Damkohler numbers for energy and mass. The parameter values considered in the 

example are: Pet = 100, Pem = 200, U = 3, Dat = 0.2, Dam = 0.5. This problem is highly nonlinear 

due to the temperature dependence in Eq. (3.67).  

 

The resulting matrix for the linearized problem, Eq.(3.66), with 3 interior points is of the form: 

 

[
 
 
 
 
 
 
 
 
 
𝑥 𝑥 𝑥 𝑥 𝑥 𝑥
𝑥 𝑥 𝑥 𝑥 𝑥 𝑥
𝑥 𝑥 𝑥 𝑥 𝑥 𝑥
𝑥 𝑥 𝑥 𝑥 𝑥 𝑥
𝑥 𝑥 𝑥 𝑥 𝑥 𝑥
𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥
𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥
𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 ]

 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
∆𝑇0

∆𝑇1

∆𝑇2

∆𝑇3

∆𝑇4

∆𝑦0

∆𝑦1

∆𝑦2

∆𝑦3

∆𝑦4]
 
 
 
 
 
 
 
 
 

 (3.68) 

This equation is a block 2x2 matrix, where each block is an (n +2)x(n +2) matrix. In general the 

problem would involve a block (n m+1)x(n m+1) matrix. The diagonal blocks are full and the off 

diagonal blocks are diagonal. The off diagonal blocks involve the coupling between y and T 

through derivatives of the rate terms in Eq. (3.65).  

 

One could also number the unknowns differently. Instead of numbering all the temperatures, T, 

followed by all the conversions, y, as in Eq. (3.68), we could number the unknowns at the first 

point, followed by those at point two and so forth. In that case the matrix structure is: 
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[
 
 
 
 
 
 
 
 
 
𝑥 𝑥 𝑥 𝑥 𝑥 𝑥
𝑥 𝑥 𝑥 𝑥 𝑥 𝑥
𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥
𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥
𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥
𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 ]
 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
∆𝑇0

∆𝑦0

∆𝑇1

∆𝑦1

∆𝑇2

∆𝑦2

∆𝑇3

∆𝑦3

∆𝑇4

∆𝑦4]
 
 
 
 
 
 
 
 
 

 (3.69) 

We will use the first ordering, Eq. (3.68), but depending on the method used to solve the matrix 

problem there could be advantages to this second one in some cases. Eq. (3.68)  is a band 

matrix with a wide band width of 2n +5, so a band solver could be used to solve the matrix 

problem. However, we will use a full matrix solver for each Newton-Raphson iteration. Note 

that because of the first derivative convection term, the matrix in Eq. (3.66) is not symmetric, 

so a general matrix solver must be used.  

 

These matrix problems can be simplified somewhat for Gauss points. Since the boundary 

equations for the first and last points do not depend on the rate, see Eqs. (3.61a) and (3.63), 

they can be eliminated at the outset to reduce the number of nonlinear equations which must 

be solved. 

 

Another simplification is to eliminate the nonlinear rate terms from the energy balance by 

subtracting Dat/Dam times the mass balance equation from the energy balance. The result is 

(n +2) linear equations and (n +2) nonlinear equations. It is always possible to eliminate the rate 

terms from the energy balance using a similar procedure. In general the result is (n +2) linear 

equations for T and (n +2)n m nonlinear equations for y. The linear portion of the matrix can be 

factored once and for all to essentially eliminate T from the equations. Although this would 

likely be more efficient, it would require a special solver, which we will not bother to develop. 

 

Various simplifications to a full Newton-Raphson iteration could be considered. For example, 

we could update the linearization, Eq. (3.65), only periodically. This would allow us to use the 

same LU decomposition for several iterations. An LU decomposition requires calculations 

O[2((n +2) (n m+1))3/3] whereas to perform a solve with the factors is O[2((n +2) (n m+1))2], so 

this strategy would lead to fewer calculations per iteration, but perhaps more iterations. 

 

We would prefer to solve each balance equation in sequence, rather than solving all of them 

together, because it would reduce the calculations per iteration to O[2(n m+1)(n +2)3/3]. For 

example, we could neglect the dependence of the energy balance on conversion, y, and then 

solve for the conversion using the updated values of T.  This is equivalent to neglecting the 

coefficients in the upper right block of Eq. (3.68). We have experimented with some of these 

strategies. Sometimes they work well, but the Newton-Raphson is the most reliable procedure. 

We have found that when the grid is too coarse, all of the solution techniques fail to converge. 
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When a solution is obtained, it generally takes about 10 Newton-Raphson iterations regardless 

of the type and number of points. 

 

Figs. 3.33 – 3.35 show some example profiles with Gauss, Chebyshev and Lobatto points. In 

all cases, the solid black line is the solution with n  = 51, which is exact for practical purposes. 

The graphs for Chebyshev and Lobatto points show the solutions for both boundary 

collocation, Eq. (3.61a), and a natural treatment, Eq. (3.62) or (3.63). In the previous problem, 

the errors caused by boundary collocation were not obvious when comparing the profiles, see 

Figs. 3.9 and 3.10, and were only apparent when comparing fluxes. For this problem the 

differences are clearly visible in the profiles of Figs. 3.34 and 3.35.  

 

The differences in the profiles are also visible in the L1 error norms for the conversion, y, 

shown in Fig. 3.36. There is again little difference in the comparison with L1 or L2 error norms. 

All of the errors for temperature, T, are smaller by roughly a factor of 5, which corresponds to 

the maximum variation of y relative to T. For this reason, all of the reported error results are for 

conversion, y, and the mass balance equation. Fig. 3.36 shows virtually no difference in the 

results with the different points, Gauss, Chebyshev or Lobatto, but there are significantly 
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greater errors when boundary collocation, Eq. (3.61a), is used with Chebyshev or Lobatto 

points instead of a natural treatment, Eq. (3.63). These results were calculated for every n  for 

n  = 9 to 31 and only odd points for larger n . The error tends to oscillate based on where the 

points lie with respect to the more difficult parts of the profile such as where the where the rate 

is large. 

 

Fig. 3.37 shows the error in conversion at the center. The error is calculated only for an odd 

number of points, since an even number requires interpolation to determine the value at the 

center and consequently the error is much larger. In agreement with Fig. 3.36, Fig. 3.37 shows 

significantly larger error with boundary collocation and erratic behavior for n  < 20. Although the 

overall average convergence rate is similar with boundary collocation, the actual error at some 

n  is greater by almost one order of magnitude for Chebyshev points and two orders of 

magnitude with Lobatto points. The error is larger with Lobatto points, because the difference 

between Eqs. (3.61a) and (3.63) is proportional to the boundary quadrature weights, W0 = 

Wn+1, and the weights are approximately twice as large for Lobatto points, so it is more 

important to treat the boundary condition correctly with Lobatto points. 

  

Fig. 3.38 shows the residual of Eq. (3.60) for two cases. The residual errors tend to be largest 

near the inlet and where the rate declines sharply as complete conversion is approached.  All 

point types display this behavior, but the errors are slightly smaller near the inlet and larger 

near the center for Chebyshev and Gauss points due to the greater concentration of points 

near the ends at the expense of their spacing near the center. 

 

Fig. 3.39 shows the residual of the inlet and outlet boundary conditions for the natural 

treatment of the mass balance equation, i.e. the left term in Eq. (3.63). These are identically 

zero for Gauss points. The errors are larger at the inlet as expected from Fig. 3.38, but they 

converge exponentially. Eq. (3.63) relates the residual of the boundary condition to the interior 

residual of Fig. 3.38 at x = 0 and 1. The boundary values of the interior residual are larger by a 

factor of 1/W0 = 1/Wn+1. Although the boundary weights decrease in proportion to n 2, the 
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residuals will decline at the faster exponential rate as shown for the previous examples in Figs. 

3.13 and 3.32.  

 

The results for Lobatto points in Fig. 3.39 

were calculated for every n  from n  = 9 to 

51 and at only odd points for larger n . For 

Lobatto points the odd points give lower 

errors for n  < 38 and even numbered 

points give lower errors at larger n . The 

oscillations between odd and even points 

are a function of the distribution of points 

with respect to the more difficult parts of 

the profile. Only odd numbered points 

were used for the Chebyshev calculations, 

so the results do not oscillate like those for 

the Lobatto results. 

 

These calculations provide another example of an application to a nonlinear boundary value 

problem. This example is different from the previous one since it contains the first derivative 

convection term which dominates the smaller dispersion term. It shows, once again, that a 

natural treatment of flux boundary conditions is superior to boundary collocation. The sharp 

profiles in this example require a large number of points to achieve acceptable engineering 

accuracy.  For example, 11 points are required to achieve a one percent average L1 error and 

15 for a one percent error in y at the center. This problem is a good candidate for a finite 

element approach. 

n

B
C

R
e

s
id

u
a

l

20 40 60 80 100
10

-11

10
-9

10
-7

10
-5

10
-3

10
-1

Lobatto Inlet
Lobatto Outlet
Chebyshev Inlet
Chebyshev Outlet

Fig. 3.39 Boundary condition residual for mass balance


